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Abstract The identification of bone lesions and ex-

tramedullary disease is crucial in the diagnosis of myeloma.

Whole-body X-ray (WBXR) is considered the gold standard

for the detection of myeloma bone lesions. Nevertheless,

the International Myeloma Working Group recently up-

dated the disease definition and emphasised the value of

magnetic resonance imaging (MRI), computed tomography

(CT) alone or combined with 18F-fluorodeoxyglucose

(FDG) positron emission tomography (PET). The presence

of more than one focal lesion with MRI or the presence of

one or more lytic bone lesion with CT (including low dose

CT alone or combined with FDG PET) is considered as

myeloma defining events (if 5 mm or more in size). Due to

its higher sensitivity to detect bone lesions (in comparison

with WBXR), MRI of spine and pelvis is mandatory for

patients with solitary plasmacytoma as additional bone le-

sions can be detected in approximately one-third of cases.

MRI is also recommended in patients with smouldering

myeloma and may be considered for the staging of multiple

myeloma (MM). Moreover, accurate imaging of MM and

related plasma cell disorders using MRI and/or FDG PET/

CT may provide information on tumour burden, aggres-

siveness and tumour heterogeneity. Nonetheless, inclusion

of MRI and FDG PET/CT for MM patient stratification and

therapeutic decisions remains to define.
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Introduction

Multiple myeloma (MM) is the most common plasma cell

(PC) dyscrasia characterised by the autonomous prolif-

eration of monoclonal PC in the bone marrow (BM) and by

the overproduction of either intact immunoglobulin mole-

cules (M-component or M-protein) or immunoglobulin

kappa or lambda free light chains (FLC). Myeloma is rare

among individuals younger than 40 years, but its incidence

rises in subsequent decades and exhibits a slight male

predominance. Myeloma belongs to a spectrum of diseases

ranging from monoclonal gammopathy of undetermined

significance (MGUS) to plasma cell leukaemia. The fron-

tiers between these different entities were recently rede-

fined by the International Myeloma Working Group

(IMWG) and are summarised in Table 1 [1].

The earlier definition of MM implicated the presence of

overt clinical manifestations of serious end-organ damage

such as osteolytic bone lesions and renal failure. This was

acceptable as long as the available treatment options could

not improve the survival and quality of life of patients

presenting a smouldering myeloma (sMM, also named

asymptomatic myeloma in the literature). However, this

approach is difficult to justify with the improved treatment

schedules and the potential devastating complications of
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myeloma (e.g., renal failure with dialysis, vertebral fracture

or neurological complications) [2]. There is a growing

consensus amongst myeloma experts that sMM patients

who present a very high likelihood of progression to

symptomatic disease should be treated earlier in their dis-

ease course [1]. Therefore, the IMWG aimed at identifying

biomarkers that were associated with an approximately

80 % probability of progression to MM within 2 years,

with a 12-month median time to the development of end-

organ damage [1].

Traditionally, bone disease has been identified on the

basis of conventional skeletal radiography [3, 4]. The

current disease definition also includes the presence of

osteolytic bone destruction (C5 mm in size) seen with

computed tomography (CT, including low-dose CT) and/or
18F-fluorodeoxyglucose (FDG) positron emission tomog-

raphy (PET/CT) [1]. Correct assessment of BM infiltration,

identification of bone lesions and extramedullary disease

(EMD) are crucial in the diagnosis of MM. This non-sys-

tematic review discusses the additional value of magnetic

resonance imaging (MRI) and FDG PET/CT in the iden-

tification of bone and BM lesions and in the general

management of PC disorders.

Clinical presentation of MM

A small percentage of patients are asymptomatic and the

diagnosis is raised when routine laboratory testing for a

coexisting disorder reveals an abnormally high serum

protein level or unexplained proteinuria. When MM be-

comes symptomatic, anaemia is a common manifestation.

In most patients, suppression of some or all marrow cell

lineages may be far greater than would be expected solely

on the basis of the apparent degree of BM replacement by

malignant cells. Back pain is particularly common because

of bone involvement [5].

Localised proliferation of malignant PC in the marrow

and bone may produce painful osteolytic lesions visible on

plain films. Bone involvement may produce several im-

portant clinical problems (e.g., pathologic fractures) in-

creasing pain and skeletal instability. Hypercalcaemia may

develop in patients with extensive bone disease. Neuro-

logical problems are an important cause of morbidity since

vertebral osteolytic lesions may produce spinal cord com-

pression or radiculopathy. Solitary plasmacytoma (SP) may

develop in both bone marrow and extramedullary (EM)

locations. True SP is rare, and nearly all patients with a

solitary bone lesion later develop disseminated myeloma.

In contrast, soft tissue plasmacytomas often remain lo-

calised (the most common site being the gastrointestinal

tract) and may be cured with local treatment [6].

Occasionally, symptoms of MM are related exclusively

to the excessive protein production and can result in a

hyperviscosity syndrome (including neurological symp-

toms, visual changes and coagulation abnormalities).

Although MM is characterised by excessive production of

monoclonal immunoglobulins, levels of normal im-

munoglobulins usually are depressed, which can contribute

to a general susceptibility to bacterial infections. Renal

failure is a common problem in patients with MM. Ex-

cessive production of light chains can cause the so-called

myeloma kidney, characterised by irreversible renal tubular

damage. Hypercalcaemic nephropathy and hyperuricemia

secondary to degradation of a large tumour cell mass may

also cause renal failure. In some cases, the amyloid depo-

sition in the kidney can cause renal failure.

Staging systems

MM is a heterogeneous disease, associated with variable

patient outcomes that depend on the disease biology, global

disease burden, presence of disease-related complications

Table 1 Revised diagnostic criteria of the main monoclonal PC disorders

Monoclonal PC disorder M-protein in serum (and/or urine) Clonal BMPC infiltration End organ damagea

MGUS \30 g/L in serum And \10 % And absent

Smouldering MM (sMM) C30 g/L in serum (or C500 mg per 24 h in urine) And/or 10–60 % And absent

Solitary plasmacytoma (SP) No And absent And absentb

MM Present (or absentc in non-secretory MM) And C60 % And C1d

a Related to monoclonal PC disorder: CRAB: hypercalcaemia, renal insufficiency, anaemia and/or C1 bone lytic lesion on skeletal radiography,

CT or FDG PET/CT
b Except a single biopsy-proven bone lesion or extramedullary clonal PC tumour
c As determined by immunofixation
d In the absence of end-organ damage, C1 of the following biomarkers of malignancy: clonal BMPC percentage C60 %; involved: uninvolved

serum FLC ratio C100 or [1 focal lesions on MRI studies
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and health status of the patient [7]. All these different pa-

rameters may influence the choice for a particular treat-

ment. A standardised prediction system may help to

distinguish aggressive disease forms from slowly progres-

sive diseases and the proposed treatments can be tailored

according to this risk stratification. An ideal staging system

would utilize routinely available parameters and should be

able to separate patients into groups with similar outcome

[7].

Initially, Salmon and Durie proposed a staging system

that was based on the tumour burden and presence of

disease complications that categorised patients into three

stages [8]. Median survival for patients with stage I disease

is longer than that for those with stage III disease. As it is

an important prognostic factor and generally is associated

with poor survival, the presence of renal failure is used to

divide the main disease stages into two sub-stages de-

pending on the presence or absence of renal failure.

Other staging systems have been developed over time

and the International Staging System (ISS) is currently the

most commonly used because of its simplicity and efficacy.

From a large dataset that included patient and myeloma-

related laboratory variables, beta-2 microglobulin (b2M)

and albumin levels emerged as the most consistent prog-

nostic factors that could be correlated with survival dura-

tion. Based on these two factors, the ISS provides highly

statistically significant stratification [9]. The b2M is the

light chain component of the major histocompatibility class

I complex; it is expressed by all nucleated cells and nor-

mally eliminated by the kidneys. Blood level of b2M in-

creases when renal function declines. Serum b2M level

correlates with tumour burden and turnover rate and re-

flects renal impairment. Serum b2M level is considered to

be an important independent prognostic factor in MM and

predicts the survival of MM patients regardless of the

Salmon and Durie stage [10, 11]. Albumin levels are rou-

tinely available blood test that is a good prognostic marker.

Several studies have suggested that low serum albumin

levels correlate with increased serum concentrations of

interleukin-6, a PC growth factor [12]; low serum albumin

levels may also be related to patient nutritional and per-

formance status [13].

Imaging techniques in MM

Radiological skeletal survey

Skeletal radiography is the primary imaging study to detect

destructive bone changes in MM. It continues to have an

important role in the Durie–Salmon clinical staging criteria

for newly diagnosed MM. 75 % of patients with MM

present with positive radiographic findings [14]. The

presence of two clearly defined lytic lesions indicates high

tumour burden and stage III disease [8]. Approximately

50 % of bone destruction must occur before there is ra-

diographic demonstration, which may present as a solitary

lesion (plasmacytoma), diffuse skeletal involvement

(myelomatosis), diffuse skeletal osteopenia and sclerosing

myeloma [15]. Diffuse myelomatosis usually manifests as

osteolytic lesions with discrete margins and uniform size,

subcortical, elliptic and confluent lesions causing large

segments of destruction. Diffuse skeletal osteopenia with-

out well-defined lytic lesions predominantly involves the

spine. Multiple compression fractures may be seen with

X-Rays with this condition. Bone sclerotic lesions may be

rarely seen in MM and are associated with the polyneu-

ropathy, organomegaly, endocrinopathy, monoclonal

gammopathy and skin changes (POEMS syndrome) [16,

17]. A complete skeletal survey (WBXR) should include a

postero-anterior and lateral view of the skull, spine, humeri

and femora, as well as an antero-posterior view of the

pelvis and chest [18].

While remaining a standard method for assessing bone

disease in MM, WBXR has several advantages and

limitations. Advantages include its low cost and ability to

detect the areas mainly involved in the disease, as well as

the risk of fracture in long bones. On the other hand, it

provides low sensitivity [19]. This ultimately means that it

underestimates bone involvement in the 30–70 % range.

In addition, some areas, such as the sternum or sometimes

the spine, are not well visualised due to superimposed

images of the bowel (Fig. 1), or cannot be detected be-

cause they are outside the field of view (FOV). Moreover,

focal lesions (FLs) are almost invisible inside the tra-

becular bone. In a prospective comparison of WBXR

versus FDG PET/CT in a series of 46 newly diagnosed

MM patients receiving up-front autologous stem cell

transplantation (ASCT), WBXR underestimated the extent

of bone involvement in approximately 40 % of patients

[20]. At the same time, the specificity of WBXR is not

high, especially in the spine, where it fails to distinguish

myeloma-related osteoporosis from benign osteoporosis

[21]. Another major limitation of conventional radiogra-

phy is that it cannot be used for the assessment of re-

sponse to treatment or during the follow-up (FU) phase,

because healing of lytic lesions is a rare event, even in

patients who achieve sustained CR [22]. In light of these

observations, though WBXR is still widely used in daily

clinical practice for the assessment of bone disease and is

considered as a standard tool in most clinical trials and

guidelines, it is likely that newer, and more sensitive,

imaging techniques will replace conventional X-rays in

the near future.
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Low-dose CT

CT is a sensitive tool for detection of bone-destructive

effects in MM. CT findings consist in lytic lesions, ex-

pansive lesions with soft tissue masses, diffuse osteopenia,

fractures and, rarely, osteosclerosis [20]. Multi-detector

row CT (MDCT) is superior to conventional X-Rays for

defining lytic lesions. In comparison to WBXR, CT more

accurately assesses the extent of bone destruction [23] and

was also found to correlate significantly with whole-body

MRI (WB-MRI) in the staging work-up. However, while

persistent osteolytic lesions after treatment were still

shown by CT, resolution of marrow signal abnormalities

was observed at MRI [24]. Although the current experience

with CT in MM is relatively limited, interest in the use of

this technique as an alternative to standard radiography is

increasing. Notably, CT may identify lesions that are

negative on WBXR and should be primarily considered in

patients with bone pain and lack of evidence of osteolysis

on the skeletal survey and/or in patients for whom MRI is

contraindicated. The MDCT allows a better evaluation of

areas at risk for fracture. However, CT imaging, as well as

plain radiography, is not suitable for the evaluation of

therapy response since most of lytic lesions remain mor-

phologically stable despite a complete response to therapy

and, therefore, it may have a predominant role only during

disease staging.

The CT acquisition protocol can be optimised to reduce

patient’s radiation exposure: before the CT image acqui-

sition (e.g., the tube current can be adapted to the patient’s

body weight or body mass index), during CT image ac-

quisition (e.g., the tube current can be modulated to the

body region using dedicated software) and finally, after

image acquisition (e.g., CT images can be reconstructed

using iterative algorithms allowing dose reduction without

degrading image quality) [25]. The radiation exposure of a

diagnostic CT of the thoracic and lumbar spine can reach

36.6 mSv [26] in comparison to 1.5 mSv for a low-dose

CT with the use of a tube current modulation software [24].

The radiation exposure of a WBXR is around 1.7 mSv

[24]. A low-dose CT is generally associated with the ac-

quisition of FDG PET images and in this setting it could

replace conventional WBXR for the morphological eval-

uation of the skeleton (Fig. 1).

Fig. 1 Images of a 46-year-old

patient with MM (IgG kappa).

No bone lesion was detected

with the WBXR (a pelvis X-ray

image). In contrast, an extensive

bone lytic lesion of the right

iliac bone was demonstrated

with the low-dose CT

performed with FDG PET

(b red arrow; 3 mm slice

thickness; tube voltage: 120 kV

and tube current–time product:

50 mAs). The MRI confirmed

the bone marrow infiltration in

the right iliac bone (c green

arrow: whole-body diffusion-

weighted MRI and d green

arrow: T1-weighted spin-echo

sequence) (colour figure online)
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MRI

MRI is an imaging procedure particularly accurate in the

evaluation of bone and soft tissues diseases. Bone marrow

MRI appearance depends on the relative presence of fat,

cells, trabecular bone, water and protein contain. The

normal BM is divided into red marrow (predominantly

composed of hematopoietic cells with rich vascular supply)

and yellow marrow (in which fat cells are predominant and

poorly vascularised) and proportion of each compartment

varies with age [27]. Trabecular bone decreases with age

and is replaced by yellow marrow (BM conversion) so that

in adulthood red marrow is confined to the axial skeleton,

skull, ribs, sternum, pelvis and proximal femurs and

humeri. Signal intensity of normal BM and myeloma le-

sions are detailed in the Table 2. MRI is widely employed

in patients affected by MM and was included in the Durie

and Salmon Plus staging system. The combination of the

diagnostic accuracy afforded by current MRI units and the

extensive coverage by phased-array spine coils allows the

acquisition of survey studies of long segments of the axial

skeleton within a reasonable time period. MR images can

then be used to determine the exact location, size and local

compressive effects of lesions and possible associated

fractures. Furthermore, it provides excellent imaging due to

its improved sensitivity over conventional radiography

[28]; it accurately shows the presence of any spinal cord

and/or nerve root compression and enables the recognition

of soft tissue masses [29]; it can predict the risk of vertebral

fracture, even though it does not help in predicting the level

of fracture (the risk of vertebral collapse is sixfold to ten-

fold higher in patients with more than 10 FLs on MRI in

comparison with those with a normal BM pattern or \10

FLs) [30]; it is the best tool for distinguishing between

benign and malignant osteoporosis-induced vertebral frac-

tures; it can accurately evaluate the percentage of vertebral

height loss before percutaneous vertebroplasty or kypho-

plasty [31, 32]; it allows to detect complications such as

soft tissue amyloid deposits, and is the standard technique

to be used in the diagnosis of avascular necrosis of the

femoral head [33].

Drawbacks of MRI include a limited specificity, espe-

cially early after therapy. Persistent red marrow islands or

haematopoietic red marrow that appears after chemother-

apy may be falsely diagnosed as MM lesions. Regenerative

red marrow (in case of recent chemotherapy or due to

anaemia) may be confused with diffuse MM infiltration. In

response to treatment (chemotherapy or radiotherapy),

necrosis appears in MM lesion responsible for a decreased

signal intensity on T1-weighted sequence and higher signal

on T2-weighted images (due to increased water content).

Two to three weeks later, the replacement of the lesion by

fatty bone marrow induces higher signal intensity on T1-

weighted images [34]. The administration of growth factors

may delay the timing of fatty replacement or induce re-

conversion of yellow marrow to hematopoietic red marrow

[34]. The presence of metallic orthopaedic hardware can be

responsible for artefacts where the implant is located,

although they can be minimised using specific MR se-

quences [35, 36]. Furthermore, the possibility to obtain a

WB scan (including the axial skeleton, skull, ribs, sternum,

pelvis and proximal femurs and humeri where MM lesions

are frequently present) is not widely available yet and,

therefore, MR is usually used for the evaluation of the

spine and pelvis only. The type of MR sequence applied

greatly affects the MR diagnostic power and may vary in

the clinical practice from centre to centre. Multiple se-

quences have been proposed for identifying focal or diffuse

Table 2 MR signal intensity of normal bone marrow and MM lesions [27, 34, 93]

MR sequence Yellow marrow SI Red marrow SI MM lesion SI

T1-weighted SE [Muscle/disca and

=subcutaneous fat

BMuscle/disca

\subcutaneous fat

�Muscle/disca and �subcutaneous fat

T2-weighted FSE with fat-

saturation or STIR

\Muscle/disca =Or slightly [muscle/

disca
�Red/yellow marrow or may be lowerb

DWIc No diffusion restriction No diffusion restriction Diffusion restriction

DCE-MRI – – Amplitude A and exchange rate constant (kep)

significantly increasedd

SI signal intensity, SE spin-echo, FSE fast SE, STIR short tau inversion recovery, DWI diffusion-weighted imaging, DCE-MRI dynamic contrast-

enhanced MRI
a When the disc is normal and not dehydrated
b Signal may be lower in case of osteoblastic lesions or lesions with high protein contents or with high amyloid deposits
c With high b value images (800–1200 s/mm2)
d Reflecting vascular volume (A) and permeability (Kep)
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disease of the BM. These sequences include spin-echo,

turbo (flash) spin-echo, gradient-echo, STIR and contrast

material–enhanced spin-echo (with and without fat sup-

pression) [34, 37–40]. Contrast-enhanced studies with fat

suppression can supplement these other studies with

demonstrate ion of enhancement in focal or diffuse disease.

At initial evaluation and FU in MM patients, MR images of

the entire axial skeleton are useful. The WB diffusion-

weighted MRI (WB-DW-MRI) is a relatively new imaging

sequence which seems to be sensitive in the detection of

both spinal and extra-spinal bone MM localisations

(Fig. 1). However, this technique is not widely available

yet and no sufficient results were produced in terms of

therapy response assessment [41–43]. In MM, localisation

of tumour spread using MR imaging closely mimics the

findings in patients with spinal marrow metastasis. In

general, abnormalities are identified as hypointensities on

T1-weighted images, hyperintensities on STIR images and

enhancement on gadolinium-enhanced images. These

imaging features are not pathognomonic for MM and may

also be seen in other diseases that affect the marrow.

However, it is worth noting that these signal modifications

can also be observed after chemotherapy and the use of

growth factors or in young individuals with hyperplasia of

normal haematopoiesis. Thus, the clinical context should

be taken into account when evaluating MRI images, and

MRI should not be performed close to chemotherapy.

By using MRI in MM it is possible to distinguish five

different patterns of marrow involvement, especially at

staging: (1) normal, typical of MGUS and detectable at

diagnosis in 50–75 % of patients with smouldering/Durie–

Salmon stage I MM; (2) focal (30 % of the patients); (3)

diffuse, (nearly 80 % of patients with advanced disease or

high tumour burden); (4) combined diffuse and focal

(10–20 % of cases); (5) variegated or ‘salt and pepper’

(which reflects non-homogeneous composition of BM;

3–5 % of the patients, typically with early-stage disease)

[44]. As described above, direct assessment of BMPC in-

filtration as afforded by MRI is possible before bone lytic

lesions appear on WBXR and/or CT [23]. Several studies

aiming to compare MRI of the spine and/or pelvis with

WBXR clearly showed the superiority of MRI over con-

ventional radiography in detecting osteolytic lesions [20,

28, 45]. The largest of these studies was recently reported

by the Arkansas group on 611 patients homogeneously

treated up-front with double ASCT [46]. MRI and WBXR

were positive in 75 and 56 % of the patients, respectively.

Nearly half of the patients with a negative skeletal survey

had FLs on MRI (more frequently in the spine, pelvis and

sternum), while in 20 % of the patients with negative MRI

a WBXR survey showed the presence of osteolytic lesions,

which were out of the FOV of MRI. Based on these results,

a careful staging of symptomatic MM should include MRI.

FDG PET/CT

In recent years FDG PET/CT was proposed as an alterna-

tive imaging technique to evaluate patients with MM. FDG

PET/CT presents some potential advantages over other

radiological methods. Most important are (1) extended field

of view (which generally includes skull, ribs, upper limbs,

femurs, pelvis and spine), (2) absence of possible collateral

effects or adverse reactions to FDG, (3) possibility to

perform it even in patients with renal failure, (4) fast image

acquisition time with 3D tomographs (this is important for

patients with fractures, bone pain or vertebral collapses),

(5) possibility to evaluate soft tissues and organs at the

same time to detect EM and para-medullary disease, (6)

possibility to semi-quantify the disease activity by means

of SUVmax possibility to describe the morphological ap-

pearance of bones thanks to low-dose CT images associ-

ated with PET images and (7) no restrictions in case of

metallic bone implants. Several studies have demonstrated

the usefulness of FDG PET/CT in the staging of MM, with

a sensitivity and specificity ranging from 80 to 100 %

(Fig. 2) [47].

FDG PET/CT was proved to have a better overall sen-

sitivity for bone lesions over the standard WBXR in stag-

ing [20], because of both a better spatial resolution and a

capacity to highlight lesions before a significant lytic

damage has been produced. FDG PET/CT is superior to

WBXR in approximately half of the patients [20], although

its sensitivity may be suboptimal for the detection of skull

lesions due to the high, physiologic uptake of the tracer in

the adjacent brain. This is why FDG PET/CT is suggested

in patients with presumed SP before a local therapy to

unequivocally exclude MM [48]. However, FDG PET/CT

is generally less sensitive than MRI in staging. MRI has a

higher potential in terms of optimal spatial resolution so

that even very small lesions or diffuse BM infiltration may

be detected. In a prospective comparison of FDG PET/CT

with WBXR and MRI of the spine and pelvis in 46 newly

diagnosed symptomatic MM patients, PET/CT proved su-

perior to WBXR in 46 % of cases, with a sensitivity of 92

versus 61 %, and was able to detect myeloma lesions in

areas out of the FOV of the MRI in 34 % of the patients.

By contrast, the sensitivity of PET/CT in the spine was

inferior to MRI, underestimating the disease in 30 % of the

patients. On combining MRI and PET/CT the ability to

detect sites of active MM was as high as 92 % [20]. Similar

results were shown in a very recent systematic review on

FDG PET/CT, which analysed 798 patients from 18 studies

and compared PET/CT with WBXR and MRI; this con-

firmed MRI as the gold standard technique for detecting

BM involvement of the spine, while PET/CT emerged as a

precise technique with higher sensitivity than WBXR with

regard to detecting the extent of bone lesions at the onset of
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the disease [47]. Finally, a recent large study by the Na-

tional Oncologic PET Registry on the relative impact of

PET on patients with 18 different types of known cancers

showed that MM was the disease in which PET had the

highest impact on management (49 % of changes of

strategy) [49]. In several studies, FDG PET/CT allowed

detection of occult sites of bone disease and/or soft tissue

masses, not previously assessed by WBXR and MRI of the

spine, in 30–50 % of patients with a suspected SP, a

finding that changed the ultimate diagnosis and sig-

nificantly affected therapeutic decisions [48, 50, 51]. In the

end, despite WBXR being still considered the reference

imaging technique, it was proved that the combination of

FDG PET/CT and spine-pelvis MRI provides the highest

sensitivity for staging the bone.

A possible interesting evolution of imaging in MM re-

gards the oncoming employment of hybrid PET/MRI

scanners, which will certainly allow in the future a very

refined evaluation of bone in a single step exam [52]. More

recent literature on the application of FDG PET/CT in MM

was mainly focused on the prognostic value of PET findings

in different phases of the disease. Both the groups of

Zamagni and Bartel found a correlation between the overall

survival (OS) and progression-free survival (PFS) [53, 54]

and PET results at staging in terms of number of PET

positive FLs, SUVmax and presence of PET positive EMD

[55]. Interpretation issues may arise, especially in the case

of very recent long bone fractures, vertebral collapses or

recent metallic bone implants aimed to a better skeletal

stabilisation. These situations cause a significant local in-

flammation that cannot be easily distinguished from the

presence of an active disease focus. The presence of

metallic prosthesis is not an absolute contraindication to the

execution of a FDG PET/CT, but periprosthetic FDG uptake

may be seen and artefacts on both PET and CT images may

occur. Finally, due to anaemia, frequently diagnosed in

patients affected by MM, diffuse FDG uptake of the reac-

tive BM hyperplasia may mask small hypermetabolic le-

sions, especially if non lytic. Furthermore, it is well known

that the uptake of small lesions is underestimated in PET

due the partial volume effect. It is important to mention that

the results of the literature showing the superiority of these

latest imaging techniques such as CT, MRI and FDG PET/

CT in the detection of bone FLs are often limited by the

absence of histological gold standard. Indeed, it is not

possible to systematically obtain a biopsy and histological

confirmation of all detected lesions. Therefore, caution is

needed when interpreting imaging studies.

Fig. 2 Shown are FDG PET/CT images of a 67-year-old patient with

MM (IgG kappa). The maximum intensity projection (a) shows

diffuse and moderate FDG uptake in the BM; a focus of high FDG

uptake can be distinguished in the right side of L2 (a blue arrow). The

transverse slice centered in L2 (b) confirms the presence of an

osteolytic lesion (approximate size: 8 mm) with high FDG uptake:

SUVmax 5.4 (red arrows). Additionally, EMD was detected along the

posterior sheath of the Gerota’s fascia (c purple arrows). Interest-

ingly, the WBXR of this patient did not show any MM lesion. The

BM biopsy revealed BMPC infiltration of 35 % probably responsible

for the diffuse FDG uptake in the BM (the complete blood count was

normal, excluding a reactive pattern) (colour figure online)
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Imaging and biological markers as a prognostic
tool

Although MM remains a fatal disease, the introduction of

ASCT in the 80s and the use of therapeutics such as

immunomodulatory drugs (thalidomide and lenalido-

mide) and the proteasome inhibitor bortezomib consid-

erably prolonged patient survival [9]. Nonetheless,

survival remains dictated by multiple risk factors related

to the patient (i.e., age, kidney function, performance

status), to tumour characteristics such as the presence of

genetic aberration and tumour gene expression profile

(GEP) and to tumour burden reflected by the ISS and

level of LDH [56–58]. Researchers introduced risk

stratification models based on ISS and/or cytogenetic

markers to identify patients with high risk (i.e., ISS stage

II/III and t(4;14) or 17p13 deletion), standard risk (i.e.,

ISS I and t(4;14) as its risk can be modulated by borte-

zomib) or low-risk (i.e., age \55 year and ISS stage I/II

without genetic abnormality) [56]. High-risk patients

have a median OS of 2–3 years compared with 6–7 years

for standard-risk patients [59]. Risk stratification and

eligibility to ASCT, therefore, determine therapeutic

choices [56, 59].

Accurate imaging of MM using FDG PET/CT and/or

MRI may provide additional information on tumour

burden, tumour aggressiveness and intra-individual MM

lesions heterogeneity. The main imaging high-risk

features are presented in Table 3. The number of FLs

detected with MRI or FDG PET (/CT) is associated

with shorter survival [46, 53]. Patients with EMD or

FDG avid MM lesions (SUVmax [ 4.2) have shorter OS

[53, 55, 60]. Authors showed that higher metabolic

tumour volume (MTV) was associated with a worse OS

and PFS of patients with newly diagnosed MM [61].

The BM FDG SUVmax correlates with the percentage of

BMPC infiltration [62]. The number of FLs and the

prevalence of EMD detected with MRI and/or FDG

PET (/CT) is higher in patients with high-risk GEP

(i.e., GEP-70) or cytogenetic abnormalities reflecting

disease aggressiveness [60, 63]. The combination of

ISS stage III, high-risk cytogenetics and diffuse BM

infiltration seen with MRI is able to identify patients

with worse prognosis and a 3-year OS probability of

35 % [64].

Risk stratification according to cytogenetic analyses

usually performed in unilateral BM aspirate and/or in a

single-lesion biopsy may disregard tumour intra-individual

heterogeneity of biological features. In this regard, FDG

PET/CT enables visualisation of tumour heterogeneity

in vivo (Fig. 3) as opposed to a unique biopsy.

Prediction of monoclonal PC disorders progression
to MM

Generally, the sFLC has prognostic value in MGUS, sMM,

active MM and SP [65]. Additional predictive factors of

progression to active myeloma are under investigation.

MGUS precedes MM in all patients with variable risk of

progression (5–58 %) to MM according to laboratory risk

factors (serum M-protein C 1.5 g/dL, the size of the

M-spike [ 15 g/L, a non-IgG heavy chain and an abnor-

mal sFLC ratio) [66, 67]. By definition, there is no bone

lesion in MGUS; however, Vande Berg et al. [68]

demonstrated the presence of BM abnormalities with MRI

in 19 % (n = 7/37) of patients with MGUS; a treatment

had to be initiated in 4/7 MRI-positive patients while none

of the MRI-negative patients required treatment after a

median FU of 31 months. A group performed FDG PET in

14 patients with MGUS and all had no related lesion [69].

Recently, a group investigated the prognostic significance

of WB MRI in 137 patients with MGUS consecutively

included [70]. The univariate analysis showed that the risk

factors of progression to symptomatic disease were a

M-protein [15 g/L (HR 13.51; 95 % CI 3.63–50.31), the

presence of FLs with MRI (HR 4.34; 95 % CI 1.23–15.33)

and a number of MRI FL[1 (HR 1.09; 95 % CI 1.07–1.12)

[70]. However, the early detection of FL and its implication

in treatment decision and prognosis remain to be defined.

Therefore, WBXR remains the gold standard in the initial

workup of patients with MGUS.

The risk of progression of sMM to MM is higher than

MGUS; it decreases with time with the highest risk (10 %

per year) in the first 5 years from diagnosis. Risk factors

predict disease progression to MM: tumour burden (FLC

assay, BM plasmocytosis and serum M-protein level), the

presence of genetic aberration such as del(17p13), t(4;14),

?1q21 or hyperdiploı̈dy and GEP risk score [71–76]. In-

terestingly, those patients with sMM and absence of risk

factors have similar outcome as the one with MGUS [76].

The presence and number ([1) of FL and the presence of

diffuse BM infiltration with MRI are risk factors for pro-

gression to symptomatic MM [77]. Researchers explored

the predictive value of consecutive WB-MRI in 63 patients

with sMM; the risk of developing MM was higher in pa-

tients with C2 FLs at initial WB-MRI (HR 6.6; 95 % IC

2.29–19); progressive disease in sub-sequent WB-MRI was

an independent predictor of progression into MM in the

presence of M-protein C20 g/L (HR 14.1; 95 % IC

5.06–39.3) or aberrant PC/BMPC C95 % (HR 10.4; 95 %

IC 2.57–42) [75]. Two other groups showed that the

presence of abnormality (C1 FL or diffuse BM infiltration)

with MRI of the spine was associated with a higher risk of
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progression to MM [74, 76]. The Mayo Clinic investigators

suggested considering sMM with high-risk factors (in-

cluding imaging) of progression as active MM for which

treatment initiation could be beneficial [2]. The IMWG

recommends MRI in the initial assessment of sMM (or

FDG PET/CT or CT depending on availability) [1].

No data are available on FDG PET/CT imaging in pa-

tients with sMM. On the other side, the utility of FDG PET/

CT in patients with SP has been much investigated. The

detection of additional lesions with FDG PET/CT or MRI

occurs in approximatively one-third of patients with SP

[48, 78–81]. Additionally, the presence of C2 FLs in pa-

tient with SP detected with FDG PET/CT was indepen-

dently associated with shorter median time to MM

progression (OR 5; 95 % CI 0–9) as well as initial abnor-

mal sFLC [78]. MRI is, therefore, mandatory in the initial

workup of SP (or FDG PET/CT or CT depending on

availability) [1].

Imaging to predict MM treatment response

The IMWG proposed international uniform response cri-

teria (IURC) for MM to assess treatment efficacy of latest

treatment strategies [82]. These criteria incorporated FLC

assay and defined new categories of response such as

stringent complete response (sCR: normal FLC assay, no

monoclonal BMPC) and very good partial response

Table 3 MM high-risk imaging features at diagnosis

Modality (field of

view)

Imaging feature Study design, population Treatment OS HR

(95 % CI)*

PFS

(95 % CI)*

MRI (thoracic and

lumbar spine

and pelvis)

Diffuse BM

involvement

Not specified, 228

consecutive patients

with MM at diagnosis

[64]

Conventional chemotherapy (27 %) or

regimens with thalidomide (33 %),

bortezomib (27 %) or lenalidomide

(13 %)

2.6

(1.0–6.4)a
N/A

MRI (thoracic and

lumbar spine)

Diffuse/variegated

pattern BM

involvement

Retrospective, 126 MM

patients eligible for

ASCT [94]

Induction regimen (VAD or TCD),

conditioning regimen (melphalan),

ASCT and thalidomide maintenance

therapy

NS 1.92

(1.18–3.12)

MRI (axial BM) [7 FLs Prospective, 668 newly

diagnosed patients

with progressive or

symptomatic MM [46]

Two cycles of intensive melphalan-based

chemotherapy, each supported by

melphalan-based chemotherapy, ASCT

and thalidomide (N = 323) or not

(N = 345)

1.89

(1.30–2.75)

N/A

FDG PET/CT

(from vertex to

toes)

[3 FLs Prospective, 303

symptomatic MM [53]

Induction chemotherapy (VTD-PACE),

melphalan-based tandem

transplantation, consolidation (VTD-

PACE) and maintenance (VTD and

thalidomide/dexamethasone)

2.45

(1.30–4.62)

N/A

FDG PET/CT

(from vertex to

toes)

Presence of EMD Prospective, 303

symptomatic MM [53]

Induction chemotherapy (VTD-PACE),

melphalan-based tandem

transplantation, consolidation (VTD-

PACE) and maintenance VTD and TD

3.13

(1.34–7.31)b
N/A

FDG PET/CT

(WB including

skull, superior

limbs and

femurs)

Presence of EMD Prospective, 192 patients

with untreated

symptomatic MM [55]

TD incorporated into double ASCT 9.75

(3.44–27.65)

5.28

(1.43–19.5)

FDG PET/CT

(WB including

skull, superior

limbs and

femurs)

SUVmax [4.2 Prospective, 192 patients

with untreated

symptomatic MM [55]

TD incorporated into double ASCT 3.23

(1.35–7.72)

2.13

(1.10–4.12)

N/A not available, NS not significant, VAD vincristine, doxorubicin, dexamethasone, TCD thalidomide-based regimen, VTD-PACE bortezomib,

thalidomide, and dexamethasone and 4-day continuous infusions of cisplatin, doxorubicin, cyclophosphamide, and etoposide, TD thalidomide/

dexamethasone

* Statistically significant (p \ 0.05) based on multivariate analyses
a Not significant anymore alone when taking into account cytogenetic risk factors
b Only when gene array data were not included
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(VGPR: serum and urine M-protein detectable by im-

munofixation but not on electrophoresis or C 90 % re-

duction in serum M-protein plus urine M-protein

level \ 100 mg per 24 h). The introduction of FLC in the

criteria also allows treatment assessment of oligo-secretory

or non-secretory diseases. MRI and/or FDG PET/CT

imaging may be considered in a small subset of patients

when neither M-protein nor FLC are measurable.

WBXR and CT are not reliable techniques to assess

treatment efficacy because their sensitivity to detect lesions

is limited and persistence of viable tumour cells cannot be

estimated. A study recently showed that the presence of

lesion sclerosis on low-dose MDCT images after borte-

zomib regimen treatment was not a predictor for sustained

response to treatment [83]. MRI and/or FDG PET/CT are

investigated for the identification of patients with long-term

response and those with high-risk of early relapse. At

diagnosis, MRI is a highly sensitive technique for the de-

tection of BM lesions; in contrast, the performance of MRI

to assess treatment response is limited. The change of signal

intensity of lesions or medullar infiltration after therapy

results from the appearance of early necrosis and oedema

and the subsequent reappearance of fat resulting in the

normalisation of the MR signal may take several months

[84]. Walker et al. showed that patients with [7 FL at

baseline axial MRI had the slowest onset of MRI complete

response (MRI-CR: achievement of a hypointense ho-

mogenous background signal on STIR images and resolu-

tion of FL) and the lowest frequency of MRI-CR compared

with those who had no FL or B7 FL [46]; MRI response did

not predict outcome and a significant proportion of patients

with MRI-CR had no clinical CR at 48 months of FU [46].

Bannas et al. [85] retrospectively compared MRI response

to haematological parameters and found that WB-MRI

Fig. 3 These FDG PET/CT images of a 76-year-old patient with MM

illustrate the heterogeneity of FDG avidity in distinct MM lesions

(intra-individual heterogeneity) as well as inside a single lesion (intra-

lesion heterogeneity). The osteolytic lesion of the left pedicle of L1

(a red arrows) shows high FDG uptake (SUVmax 7.6); the FL of the

sacrum (b green arrows) shows an heterogeneous FDG uptake

(SUVmax 5.8; SUVmean 3.5 and SUV standard deviation in a 60 %

threshold MTV: 0.62) and a FL of the left 5th rib (c purple arrows)

with less intense FDG uptake (SUVmax 3.9) (colour figure online)

104 Clin Transl Imaging (2015) 3:95–109

123



misclassified 7/33 patients (21.2 %). Hillengass et al. [86]

also found a weak agreement (kappa coefficient \ 0.30)

between WB-MRI response and IURC; MRI tended to

overestimate the response of diffuse BM infiltration while it

underestimated FL response; however, they found that the

number of FL after treatment correlated with OS (57–64 %

OS in patients with [10 FL compared to 91–100 % in pa-

tients with B10 FL). Authors demonstrated the feasibility of

DW-MRI and dynamic contrast-enhanced MRI for treat-

ment assessment of MM [43, 87–89]. Response assessment

using WB-DW-MRI was recently prospectively investi-

gated; MRI misclassified 4/26 patients (15 %) and failed to

identify one responder and three non responders according

to IURC; they reported a false non-response of a patient who

had received G-CSF and pointed the limitation of ADC

determination in patients with low tumour burden [43].

In that purpose of treatment assessment, PET/CT

imaging seems more promising as it can show viable tu-

mour cell activity. Zamagni et al. [55] demonstrated in a

prospective study that persistent FDG uptake

(SUVmax [ 4.2) after induction treatment or incomplete

FDG suppression at 3 months after ASCT was predictor of

worse 4-year PFS and OS.

Current recommendations for the use of PET
and MRI

Table 4 summarises the imaging techniques recommended

in the different sub-groups of PC disorders for staging and

FU according to the consensus recommendations of the

IMWG [1, 18, 90]. The role of FDG PET/CT in the staging

of patients with sMM, SP and MM remains to define [90];

FDG PET/CT may be considered in patients with metallic

foreign bodies that contraindicates MRI. Though, NCCN

guidelines recommend MRI and/or CT and/or FDG PET/

CT as clinically indicated in patients with SP and sMM

[65]. Due the higher sensitivity of CT to detect bone le-

sions compared with WBXR, CT (without contrast) can

replace WBXR [83, 91]. It seems reasonable to suggest the

use of MRI or FDG PET/CT if WBXR fails to show bone

lesions in a patient with symptoms [65].

Table 4 Imaging guidelines according to the consensus recommendations of the IMWG and/or NCCN guidelines

Monoclonal

plasma cell

disorder

WBXR MRIa MDCTb FDG PET/CTb

sMM Staging Recommended Recommended Consider if

available

Not recommended (role to

define)

FU Recommended annually or

if symptomatic

Recommended if symptoms and

negative WBXR

Consider if

available

Not recommended

SP Staging Recommended Mandatory in all patients Consider if

available

Useful in patients with

suspected EM

plasmacytoma

FU Recommended annually or

if symptomatic

Recommended if symptoms and

negative WBXR

Consider if

available

Not recommended (role to

define)

MM Staging Recommended Can be considered as routine

evaluation; strongly indicated

in non-secretory MM, indicated

if suspicion of spinal cord

compression

Consider if

available;

indicated if

soft-tissue

lesion

Helpful for detection of

EMD and evaluation of

rib and appendicular

bone lesions and in

patients with elevated

LDH

Treatment

response

assessment

Not required for

assessment of response

unless clinically

indicated. Indicated for

restaging in case of

progression

Strongly indicated in non-

secretory MM; recommended to

monitor soft-tissue mass (or

CT); recommended if newly

symptomatic area and negative

WBXR

Recommended to

monitor soft-

tissue mass (or

MRI); consider

if available

Useful in patients with

Bence Jones protein

escape, and otherwise

rapidly recurrent disease

FU Recommended once a year Should be considered if

symptomatic and negative

WBXR

Consider if

available

Not recommended

a WB MRI if available or MRI of the spine and pelvis; MRI of another anatomic region if specific symptoms (i.e., for the exclusion of spinal

cord compression or a soft-tissue mass)
b The use of WB MDCT obviates the need of WBXR
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Future perspective

Advances in the knowledge of MM at a molecular level

reveal that MM as many tumours is characterised by both

intra- and inter-tumour heterogeneity [92]. Imaging, espe-

cially PET/CT using FDG or novel radiopharmaceuticals

targeting other biological processes, may identify tumour

heterogeneity. The consideration of tumour heterogeneity

in future trials and risk stratification of patients according

to risk-models combining genetic, molecular, biological

biomarkers together with imaging will probably have an

impact on treatment individualised strategies and outcome.

These models may help sparing the treatment-related

toxicity in patients with favourable outcome while identi-

fying patients with poor prognosis to intensify treatment

and extend their survival. Nevertheless, the subsequent

implementation of these risk-models into the clinics will

require easy and rapid access to all these data.

Conclusion

MRI of spine and pelvis is mandatory for patients with SP

as additional bone lesions can be detected in one-third of

cases. Due to its higher sensitivity (compared with WBXR)

to detect bone lesions, MRI is also recommended in pa-

tients with sMM and may be considered for the staging of

MM. Additionally, the imaging of MM and related PC

disorders using MRI and/or FDG PET/CT may reflect tu-

mour burden and aggressiveness and might provide addi-

tional information on tumour heterogeneity. Nonetheless,

inclusion of MRI and FDG PET/CT for MM patient

stratification and therapeutic decisions remains to define.
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