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A B S T R A C T

Exosomes play essential roles in intercellular communications. The exosome was discovered in 1983, when it
was found that reticulocytes release 50-nm small vesicles carrying transferrin receptors into the extracellular
space. Since then, our understanding of the mechanism and function of the exosome has expanded exponentially
that has transformed our perspective of inter-cellular exchanges and the molecular mechanisms that underlie
disease progression. Cancer cells generally produce more exosomes than normal cells, and exosomes derived
from cancer cells have a strong capacity to modify both local and distant microenvironments. In this review, we
summarize the functions of exosomes in cancer development, metastasis, and anti-tumor or pro-tumor immunity,
plus their application in cancer treatment and diagnosis/prognosis. Although the exosome field has rapidly
advanced, we still do not fully understand the regulation and function of exosomes in detail and still face many
challenges in their clinical application. Continued discoveries in this field will bring novel insights on inter-
cellular communications involved in various biological functions and disease progression, thus empowering us to
effectively tackle accompanying clinical challenges.

1. Exosomes and other major types of extracellular vesicles

Exosomes are the most broadly investigated group among the three
main subgroups (exosomes, microvesicles, and apoptotic vesicles, i.e.,
ApoEVs) of extracellular vesicles (EVs) released from mammalian cells.
Exosomes arise from the membranes of multivesicular bodies (MVB)
[1,2] and are cup-shaped in morphology under electron microscopy,
with diameters ranging from 50 nm to 150 nm [3]. After ultra-
centrifugation (100,000g), relatively pure exosomes can be isolated by
an additional sucrose gradient step, with exosomes at a sucrose density
from 1.13 to 1.19 g/mL. Membrane protein CD63, ALG2-interacting
protein X (ALIX), tumor susceptibility gene 101 protein (TSG101), and
proteasome component HSC10 are highly enriched on exosomes [4].
Recently, Lyden and colleagues identified two exosome subpopulations:
large exosome vesicles (Exo-L), sized 90-120nm, and small exosome
vesicles (Exo-S), sized 60-80nm [5].

Microvesicles, sometimes called microparticles, are generated from
the plasma membrane and have diameters ranging from 100 nm to
1000 nm [6]. Membrane proteins such as the integrin GPIB (CD42) and

P-selectin are enriched on microvesicles [7]. While both exosomes and
microvesicles are released from healthy cells, the ApoEVs are released
from apoptotic cells or dying cells. The ApoEVs range in diameter from
1000 nm to 5000 nm, and they contain the nuclear protein histone and
DNAs [8]. Besides the three main subtypes, other EVs include mem-
brane particles, exosome-like vesicles, neutrophil-originating EVs (ec-
tosomes) [9], prostate-originating EVs (prostasomes) [10,11], migra-
somes [12], oncosomes [13], large oncosomes [14] and others [15].

While exosomes and other EV subtypes have different origins and
take different cargos (Fig. 1), they all have the capacity to communicate
with other cells and modulate local or distant microenvironments.
Distinguishing the three main subtypes of EVs unambiguously on the
basis of size, density, or morphology is difficult, because these prop-
erties overlap somewhat between the subtypes. In many published
papers, therefore, all membrane-released EVs are referred to simply as
EVs without attempts to distinguish them as exosomes, microvesicles,
or other subtypes. However, strict criteria for distinguishing exosomes
and other EV subtypes can help us understand their functions more
thoroughly and are beneficial for reliably comparing and better
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understanding the findings from different study groups. In this review,
we focus on exosomes’ function in tumor development, metastasis, and
immunity. Although other types of EVs, such as migrasomes, onco-
somes, and large oncosomes have also been associated with cancer
development [12,13,16], their contributions will not be extensively
discussed in this review, in the interest of focus and space.

2. Exosome biogenesis, composition, and regulation

The process of exosome biogenesis involves several steps: 1) the
inward budding of the plasma membrane forms early endosomes; 2) the
early endosomes generate late endosomes and MVBs containing in-
traluminal vesicles, which are also called exosomes; and 3) upon fusion
of late MVBs with the plasma membrane, exosomes are released; if
these MVBs fuse with lysosomes, the MVBs are degraded [17] (Fig. 1).
Generally, the endosomal sorting complex required for transport
(ESCRT) machinery, such as ESCRT-0, -I, -II, and -III and accessory
proteins, control exosome biogenesis and formation and vesicle scission
[18–20]. Sphingolipid ceramide [21], the small GTPase ADP ribosyla-
tion factor 6 (ARF6), and its effector phospholipase D2 (PLD2) [22] also
control exosome biogenesis, independent of the ESCRT machinery. In
melanocytes, melanosomal protein PMEL [23] and tetraspanin CD63
[24] directly participate in ESCRT-independent endosomal sorting.

The RAB family, especially RAB27A, RAB27B, RAB11, RAB35, and
RAB7, regulate exosome secretion [25–27]. The controlling of exosome
secretion by various RAB proteins is dependent on the cellular context.
For example, RAB27A and RAB27B control exosome release in HeLa
cells [25], while RAB7 controls exosome release in MCF-7 breast cancer
cells [27]. Vacuolar protein sorting protein 33b controls the maturation
and secretion of exosomes in hematopoietic stem cells and leukemia-
initiating cells [28]. Soluble N-ethyl- maleimide-sensitive factor (NSF)-
attachment protein receptor complex (SNARE) [29,30] and the micro-
environment pH [31] are also involved in the fusion between MVBs
with the plasma membrane and thereby the regulation of exosome re-
lease. Unlike exosomes, microvesicles and ApoEVs bud directly from
the plasma membrane, not from MVBs. The mechanism of microvesicle
and ApoEV release are not well known, but ARF6 [32] and the small
GTPase RHOA [33] were reported to control microvesicle shedding;
caspase-3 was required for detachment of ApoEVs from the membrane

[34].
Nearly all mammalian cells secrete and take up exosomes [35,36].

Besides cancer cells, cells such as adipocytes [37], immune cells
[38,39], and brain resident cells [40,41] have been reported to release
or take up exosomes in physiologic and pathologic conditions. Exo-
somes carry many cargos: proteins, lipids, nucleic acids (mRNA, mi-
croRNAs [miRNAs], and DNA), and metabolites [42–45]. The ExoCarta
database (http://exocarta.org/) lists thousands of proteins, mRNAs, and
miRNAs that are candidate exosomes cargos [46], but the cargos vary in
different cell lines. The mechanism by which exosomes selectively
package their cargos remains unclear. It has been reported that it re-
quired special sequences to sort mRNA or miRNAs in exosomes [47,48],
but reliable criteria for the selection of proteins, lipids, and even RNAs
into exosomes are unknown. Patton and colleagues found that colon
cancer cells with mutant KRAS have different miRNA content in their
exosomes than cells with wild-type KRAS: miR-10b was enriched in the
exosomes from wild-type KRAS cancer cells, whereas miR-100 was
enriched in the exosomes from mutant KRAS cancer cells [48]. This
finding indicates that KRAS might control exosomal miRNA packaging.
Lyden and colleagues showed that Exo-S specifically carries the proteins
associated with endosomes and MVBs, while Exo-L carries proteins
associated with the plasma membrane, cell-cell contact and junctions,
late endosomes, and Golgi network proteins. Their findings further
demonstrate that cargos are selectively packaged in exosomes [5].

Exosome uptake by recipient cells is processed by endocytosis, re-
ceptor-ligand interaction, or fusion with the cell membrane. The uptake
of exosomes is not random, but depends on interactions between pro-
teins on the surface of the exosomes and recipient cells. Several reports
have suggested that adhesion-associated molecules on the surface of
exosomes, such as tetraspanins, glycoproteins, and integrins, determine
which cells accept exosomes [49,50]. For example, exosomes con-
taining tetraspanin 8 (TSPAN8) and integrin α4 were easily taken up by
CD54+ pancreas cells [49]. TSPAN8-α4 integrin (CD49d) in exosomes
contributed to exosome binding to and uptake by endothelial cells,
thereby promoting angiogenesis [50]. Integrin CD47 expression in en-
gineered exosomes facilitated uptake by tumor cells through micro-
pinocytosis [51]. To demonstrate that recipient cells can take up
mRNAs loaded in EVs in vivo, Rheenen and colleagues transfected Cre
recombinase into malignant tumor cells such that the EVs released from

Fig. 1. Exosomes and other extracellular vesicles: biogenesis and secretion in eukaryotic cells. First, exosomes fuse into early endosomes and multivesicular bodies
(MVBs). Late MVBs fuse with the plasma membrane to release exosomes or with lysosomes for degradation. Exosomes can be further categorized as large exosomes
and small exosomes. CD63, ALIX, TSG101, and HSC10 are enriched in exosomes; many mRNAs, microRNAs (miRNAs), proteins, and receptors are also carried by
exosomes. Microvesicles bud directly from the plasma membrane, not from MVBs. CD42, integrins, and selectin are enriched in microvesicles; microvesicles also
carry multiple receptors, proteins, miRNAs, and mRNAs. Apoptotic vesicles are derived from apoptotic cells. They contain DNAs and histone besides proteins,
receptors, mRNAs, and miRNAs.
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these cells contained Cre mRNA. After the reporter-expressing recipient
benign tumor cells took up these EVs, their color switched from pre-
labeled red to green due to Cre-LoxP recombination [52]. These data
showed that mRNA in exosomes can be transferred to and function in
recipient cells. Although the authors did not distinguish EVs from
exosomes in this paper, it is very likely that exosomes also can transfer
mRNAs between cells.

3. Exosome function in cancer development

Exosomes have been widely studied for their roles in intracellular
communication, especially during tumor development. Exosome-asso-
ciated RNAs, miRNAs, proteins, DNAs, and even metabolites can
change the fate of recipient cells by autocrine and paracrine signaling.
First, exosomal proteins can change the fate of exosome-releasing cells
themselves via an autocrine pathway. For example, the exosomes de-
rived from chronic myeloid leukemia cells contained a cytokine,
TGFβ1, which binds to the TGFβ1 receptor on the leukemia cells,
thereby promoting tumor growth through activation of ERK, AKT, and
anti-apoptotic pathways in the producer cells [53]. Second, exosomal
DNA changes cell survival itself. It has been debated whether exosomes
carry DNA, because exosomes come from MVB in the cytoplasm but do
not connect to the nucleus. However, several groups have detected
double-stranded DNA fragments and DNA mutation in exosomes [54].
Immuno-gold labeling of double-stranded DNA detected by transmis-
sion electron microscopy revealed the presence of DNA in some exo-
somes that were still in cell plasma before their secretion [55]. If exo-
some secretion was inhibited, the accumulation of nuclear DNA in the
cytoplasm resulted in cell cycle arrest or apoptosis through activation of
reactive oxygen species-dependent DNA damage response. Thus, exo-
some secretion of harmful cytoplasmic DNA from cells supported cell
survival and maintained cellular homeostasis [55].

Compared to these autocrine effects, paracrine mechanisms through
which exosomes mediate intercellular interactions and modulate the
microenvironment have been well studied. Cargos in exosomes or EVs
serve as external stimuli for recipient cells, thereby modifying the sig-
naling pathways in recipient cells. Because of the heterogeneity of
cancer cells, exosomes or EVs from host cancer cells can activate the
receptors or change miRNA or RNA expression in the neighboring
cancer cells to alter their biological phenotypes. For example, glioma
cells transferred EVs with the oncogenic receptor EGFRvIII to neigh-
boring glioma cells lacking this receptor, thereby activating the AKT
pathway in neighboring glioma cells and conferring on these cells the
capacity for anchorage-independent growth [13]. Similarly, mutant
KRAS, along with other oncogenes such as EGFR and SRC, can be
transferred by exosomes to recipient colon cancer cells of wild-type
KRAS, promoting tumor invasion [56]. Breast cancer cells released
exosomes harboring PD-L1, allowing its transfer to other cancer cells
expressing low- or no- PD-L1, promoting tumor evasion of immune
surveillance [57]. Apoptotic vesicles also contribute to the survival of
tumor cells. Apoptotic glioblastoma cells released ApoEVs to transfer
spliceosomal proteins such as RBM11 and small nuclear RNAs (snRNAs)
to change the mRNA splicing (MDM4, CCND1) in recipient cells, re-
sulting in tumor aggressiveness and drug resistance [58].

Exosome not only transfer between cancer cells, but also transfer
between cancer cells and stromal cells: stromal cells accept exosomes
derived from cancer cells to generate a pro-tumor microenvironment;
reciprocally, cancer cells take the exosomes released from stromal cells
to facilitate cancer cell proliferation or invasion. For example, tumor-
derived exosomes promoted endothelial cell proliferation and angio-
genesis [50,59]. The exosomes from MDA-MB-231 breast cancer cells
and U87 glioma cells endowed normal fibroblasts and epithelial cells
with transformed characteristics of cancer cells, such as enhanced an-
chorage-independent growth and survival through the enzyme trans-
glutaminase and its substrate fibronectin [60]. Breast cancer cell-de-
rived exosomes triggered adipose-derived mesenchymal stem cells to

transform to tumor-associated myofibroblasts via the TGFβ-SMAD-
mediated signaling pathway [61]. Some cancer cells released TGFβhigh
cancer exosomes, which trigged the transition of fibroblasts into α-
smooth muscle actin positive myofibroblasts [62].

Tumor cell-derived exosomes can also regulate endothelial cell
characteristics to promote angiogenesis, especially in hypoxic condi-
tions. Exosomes presenting tetraspanins can promote tumor growth by
increasing angiogenesis [63]. For example, cancer cell-derived exo-
somes enriched with TSPAN8 and integrin subunit α4 enhanced en-
dothelial cell proliferation and angiogenesis through upregulation of
angiogenesis-related genes [50]. NOTCH ligand Delta-like 4 (DLL4)
presented by cancer cell-derived exosomes increased vessel density and
branching in vivo [64]. Soluble E-cadherin, a potent inducer of angio-
genesis, was expressed at greater levels in the exosomes of ovarian
cancer cells. Soluble E-cadherin carried by exosome was hetero-
dimerized with vascular-endothelial cadherin on endothelial cells to
active β-catenin and NF-kB signaling for angiogenesis [65]. Hypoxic
conditions stimulated tumor cells, such as glioblastoma, to release
exosomes, which enhanced angiogenesis by upregulating protease-ac-
tivated receptor 2 (PAR2) in epithelial cells [66]. Under hypoxic con-
ditions, lung cancer cells produced more exosomes enriched with miR-
23a, which suppressed its target prolyl hydroxylases 1 and 2 (PHD1 and
PHD2), resulting in the accumulation of hypoxia-inducible factor-1-
alpha (HIF1A) in endothelial cells. Exosomal miR-23a also targeted to
the tight junction protein ZO1 to increase vascular permeability and
cancer migration [67]. In the hypoxic bone marrow, multiple myeloma-
derived exosomal miR-135b inhibited its target, factor-inhibiting hy-
poxia-inducible factor 1 (FIH1AN), in endothelial cells, thereby en-
hancing endothelial tube formation under hypoxic conditions [68].

Stromal cells also change the fate of tumor cells via exosomes.
Activated stromal cells around breast cancer cells were found to release
exosomes containing cytoplasmic unshielded RNA RN7SL1, which ac-
tivated the viral RNA pattern recognition receptor RIG-1 signaling, re-
sulting in an inflammatory response and tumor progression [69].
Cancer-associated fibroblast-derived exosomes (CAF-DEs) containing
abundant ADAM10 enhanced cancer cell motility through the GTPase
RHOA and maintained stem cell status through Notch signaling in
cancer cells [70]. In addition, CAF-DEs carried metabolic cargos, in-
cluding amino acids, lipids, and TCA-cycle intermediates. After prostate
and pancreatic cancers took in CAF-DEs, glycolysis and glutamine-de-
pendent reductive carboxylation were increased in cancer cells, thereby
promoting tumor growth under nutrient deprivation or nutrient-
stressed conditions [45,71].

4. Exosomes induce drug resistance in cancers

Exosomes and EVs have robust impacts on drug resistance and in-
duce drug resistance through multiple mechanisms. First, exosomes
released from tumor cells can help the cells expel cytotoxic drugs, as has
been observed in melanoma and ovarian cancer [72–75]. Second, drug-
sensitive cells become drug resistant by taking up exosomes derived
from drug-resistant cells. For example, a multidrug-resistant leukemia
subline transferred exosomes containing P-glycoprotein to drug-sensi-
tive cells [76]. MiRNAs such as miR-30a, miR-222, or miR-100-5p
carried by exosomes induced drug-sensitive cells to become resistant
possibly through regulating MAPK or mTOR pathway [77,78]. Ex-
pression of glutathione S-transferase P1 (GSTP1), an enzyme that has
been reported to detoxify several anticancer drugs by conjugating them
with glutathione [79], was much higher in exosomes derived from
doxorubicin-resistant cells. When exosomal GSTP1 was transferred to
sensitive cells, it conferred drug resistance to sensitive cells, and
numbers of circulating GSTP1-containing exosomes were negatively
correlated with the clinical outcome of chemotherapy in breast cancer
patients [79]. Exosomal long-non-coding RNA (lncRNA) mediated su-
nitinib drug resistance in renal cell carcinoma, since lncRNA competed
for binding of miR-34 and miR-449 to their target RNAs, thereby
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increasing the expression of AXL and MET in sensitive cells to spread
sunitinib resistance [80]. EVs released by HER2+ cells that are resistant
to HER2-targeted drugs contained immune-regulated proteins TGFβ1
and PD-L1, which made cells that had been sensitive to HER2-targeted
drugs resistant. In fact, TGFβ1 expression was higher in EVs isolated
from the serum of patients with HER2+ breast cancer that did not re-
spond to HER2-targeted drugs trastuzumab or lapatinib [81]. Third,
stromal exosomes can also induce drug resistance in cancer cells. For
example, exosomes were transferred from the TME stroma to breast
cancer cells to expand therapy-resistant tumor-initiating cells by exo-
some-RNA mediated activation of the STAT1-NOTCH3 pathway in the
cancer cells [82]. Macrophage-derived exosomes decreased the sensi-
tivity of pancreatic cancer cells to gemcitabine, an effect mediated by
transfer of miR-365, which activated the enzyme cytidine deaminase to
make pancreatic cancer cells resistant to this chemotherapy agent [83].
The other mechanisms of EV-based drug resistance have been com-
prehensively reviewed by McNamee and O’Driscoll [84].

5. Exosome function in cancer metastasis

The cancer metastatic process comprises several steps. It begins with
local invasion by cancer cells, then cancer cells enter the circulation
(intravasation) via the lymphatic system or the blood vessel. In the
circulation, the cancer cells need to survive and disseminate to different
organs, exiting the circulation to enter the parenchyma of distant or-
gans (extravasation). Finally, extravasated cancer cells can die, remain
dormant or outgrown to succeed in colonization in distant organs.
Exosomes have an extensive impact on each step of metastasis.

5.1. Exosomes in cancer cell migration and invasion

First, exosomes control cell polarity and directional cell movement.
Fibrosarcoma cells secreted exosomes contain fibronectin that bound
with cellular integrin receptors to facilitate integrin clustering and
strong adhesion formation at the leading edge to promote cell migration
[85]. Cancer-associated fibroblast–secreted CD81-positive exosomes
were loaded with WNT ligand WNT11 and were taken up by breast
cancer cells. The CD81/WNT11-positive exosomes promoted breast
cancer cell protrusion, invasion, and metastasis via activating autocrine
WNT-planar cell polarity signaling [86]. Second, exosomes derived
from cancer cells could modulate the extracellular matrix (ECM) to
promote cell invasion and metastasis. For example, CD151/TSPAN8-
positive exosomes derived from the rat pancreatic adenocarcinoma cell
line (ASML) recruited integrins and proteases, which degraded collagen
and fibronectin to modify ECM [87]. Exosomes from RAB27B high-
expressing metastatic breast cancer cells contained activated matrix
metallopeptidase 2 (MMP2), a protease that degrades the ECM [88].
Third, exosomes could unlock the tight junctions to enhance tumor cells
intravasation. Exosomes containing miR-105 from breast cancer re-
duced the expression of ZO1 in endothelial cells, thus destroyed the
tight junctions of endothelial cells [89]. Fourth, exosomes derived from
cancer cells could promote recipient cells’ epithelial-mesenchymal
transition (EMT), which is an essential process for cancer invasion and
metastasis. Many EMT factors delivered by exosomes, such as HIF1α,
matrix metalloproteinase 13 (MMP13), casein kinase II α (CKIIA), an-
nexin A2, and latent membrane protein 1 (LMP1), contributed to the
metastatic features of recipient cells [90–93]. Exosomes also may
contain anti-metastasis cargos. For example, bladder carcinoma cell
exosomes contained miR-23b, which deterred cell invasion and me-
tastasis. However, the release of these miR-23b–containing exosomes
reduced miR-23b level inside the parental cells, promoting their me-
tastasis [94].

Other EVs have similar capacities to promote cancer cell invasion.
For example, less malignant tumor cells that took up EVs from highly
malignant tumor cells showed enhanced migratory behavior and me-
tastatic capacity by in vivo imaging [52]. The secretion of EVs by breast

cancer cells can help metastatic cancer cell extravasation across the
blood-brain- barrier (BBB). These EVs from brain metastatic cancer cells
transferred miR-181c into endothelial cells of the BBB, resulting in the
destruction of cell-cell contacts and therefore the breakdown of the BBB
to allow brain metastasis [95]. Large oncosomes, which are a subgroup
of gigantic EV (size> 1,000 nm to> 10,000 nm), were reported to
promote amoeboid migration of metastatic prostate cancer cells [16].
Migrasomes are migration-dependent EVs that are assembled on re-
traction fibers, present at the trailing edge of migrating cells. As cells
migrate, the migrasomes are released into the extracellular environ-
ment and are taken up by surrounding cells, but the exact function of
the migrasomes in the recipient cells is unclear [12].

5.2. Exosomes in pre-metastatic niches

Primary tumors release systemic signals, such as cytokines or exo-
somes, to prepare metastatic sites. The importance of exosomes in
building these pre-metastatic niches for disseminated cancer cells was
revealed by two reports that tumor cell-derived exosomes conditioned
lymph nodes or lung tissue to become favorable niches for the meta-
static colonization and outgrowth of melanoma cells [96,97]. Hood
et al. reported that melanoma-derived exosomes can travel to sentinel
lymph nodes through lymphatic trafficking. These exosomes prepared
lymph nodes for melanoma metastasis via the activation of molecular
signals that modulated ECM deposition and vascular proliferation [96].
The exosomes from pancreatic cancer possessed increased levels of
miRNAs, such as miR-494 and miR-542-3p, which downregulate cad-
herin-17, thereby increasing proteases, adhesion molecules, and other
proteins to prepare pre-metastatic niches in lungs or lymph nodes for
tumor cell hosting [97]. In prostate cancer, exosomes released by the
cancer cells impaired osteoclast differentiation but promoted osteoblast
activity to regulate the microenvironment of bone metastases [98,99].
However, some exosomes cannot reach the pre-metastatic organ
without the help of the soluble fraction or the adhesive matrix. Speci-
fically, exosomes from rat pancreatic cancer had to combine with the
cell-released soluble fraction, such as CD44v, c-Met, UPAR, and C3, to
establish pre-metastatic niches within the lung or lymph node [100]. In
addition, microvesicles released by CD105+ renal cell carcinoma stem
cells triggered angiogenesis and promoted the formation of a pre-me-
tastatic niche in the lung [101]. The CD105+ microvesicles contained a
selected pattern of miRNAs that induce endothelial cell growth, inva-
sion of the matrix, and resistance to apoptosis [101].

Lyden and colleagues have advanced our understanding of the novel
function of exosomes in pre-metastatic niches. They found that exo-
somes from melanoma cells delivered MET, a receptor tyrosine kinase,
to bone marrow progenitor cells. After taking up the MET+ exosomes,
bone marrow progenitor cells activated hepatocyte growth factor
(HGF)-MET signaling to support tumor metastasis to bones [102]. The
exosomes from pancreatic cancer cells were taken up by Kupffer cells,
contributing to the establishment of pre-metastatic niches in the liver.
Pancreatic cancer cell-derived exosomes deliver macrophage-inhibitory
factor (MIF) that made Kupffer cells release more TGFβ, which in turn
increased fibronectin production and recruited bone marrow-derived
macrophages for liver pre-metastatic niche formation [103]. Strikingly,
exosomes derived from breast cancer contained different integrin pat-
terns, which predetermined the future metastatic organ. Specifically,
high expression of integrins α6β4 and α6β1 in breast cancer-derived
exosomes primed for lung metastasis, while high expression of integrin
αvβ5 in exosomes primed for liver metastasis [104].

Additionally, it was reported that snRNAs in exosomes derived from
lung cancer or melanoma promoted lung pre-metastatic niches by ac-
tivating TLR3 and releasing cytokines which recruited neutrophils into
the lung [105]. Another striking new mechanism for facilitation of
metastasis is an increase of nutrient availability to cancer cells in the
pre-metastatic niche by exosomal miR-122. Glucose uptake by niche
cells such as lung fibroblasts and brain astrocytes were suppressed by
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miR-122 through the downregulation of the glycolytic enzyme pyruvate
kinase, thereby increasing nutrient availability for metastatic cancer
cell growth [106].

In contrast, exosomes from poorly metastatic melanoma cells lack
the capacity to generate pre-metastatic niches in the bone but inhibit
cancer cell in the secondary organ sites. These "non-metastatic" exo-
somes stimulate an innate immune response in the bone marrow
through pigment epithelium-derived factor (PEDF) on the outer surface
of the exosome. This exosome-induced immune response caused cancer
cell clearance at the pre-metastatic niche via recruitment of monocytes,
natural killer (NK) cells, and macrophages [107]. In another study,
exosomes derived from parental lung cancer cells contained miR-192,
which inhibited interleukin 8 (IL8), intercellular adhesion molecules,
and CXCL1 in the endothelial precursor cells of the bone micro-
environment, thus preventing effective metastatic angiogenesis and
impairing colonization. However, the exosomes from highly metastatic
subpopulations harbored less miR-192, promoting bone-metastasis ni-
ches [108].

5.3. Stromal exosomes in metastatic dormancy and outgrowth

In metastatic organ sites, stroma-derived exosomes can regulate
survival, dormancy or outgrowth of disseminated cancer cells. Bone
marrow mesenchymal stem cell-released exosomes transferred miR-23b
to metastatic cancer cells, resulting in cancer cell dormancy through the
suppression of MARCKS, which promotes cell cycling and motility
[109]. In contrast, astrocytes in the brain microenvironment can release
exosomes containing miR-19, which downregulated PTEN expression in
metastatic tumor cells, thereby promoting the outgrowth of brain me-
tastasis [41].

The non-random pattern of metastasis can be explained by the “seed
and soil” hypothesis, which indicates successful metastasis depends not
only on the intrinsic factors of cancer cells (the “seed”) but also on the
preferential microenvironment of select organs (the “soil”) that allow
cancer cells to survive and metastases can only prosper when the ap-
propriate seed was implanted in its suitable soil [110]. The effect of
exosomes on educating the stromal cells in the distant organs for
building pre-metastatic niches complements the “seed and soil” hy-
pothesis, revealing that the cancer cells release exosomes to modify the
selected “soils” before they arrive. Meanwhile, the exosome interactions
between cancer cells and stromal cells in the distant organs also high-
light the bi-directional (seed-soil) co-evolution during the metastasis
process. Fig. 2 and 3 briefly summarizes various functions of exosomes
in cancer development and metastasis.

6. Exosome function in cancer immunity

Besides the strong capacity to regulate tumor metastasis, another
important function of exosomes in cancer is modulating tumor immune
response. The evidence for exosome-mediated intercellular antigen
transfer was first reported by Thery and colleagues 20 years ago
[38,39]. They showed that Epstein-Barr virus-transformed B cells re-
leased exosomes containing major histocompatibility complex class
(MHC)-II, which activated CD4+ T cells, whereas dendritic cell (DC)-
secreted exosomes expressed MHC-I, which activated CD8+ T cells in
vitro. Recently, the success of immune checkpoint therapy in several
cancer types has boosted the interest in further exploration of immune
dysregulation in tumors, including modification of tumor immunity by
exosomes.

6.1. Anti-tumor immune response

Tumor-derived exosomes or EVs have been reported to activate
immune responses. Exosomes derived from tumor cells present neo-
antigens and/or MHC-peptide complexes to prime and activate T cells
by the direct presentation and cross-presentation through DCs, or

directly activate NK cells or macrophages [111–115]. For example,
tumor-derived exosomes transferred tumor antigens heat-shock pro-
teins (HSP70-80) and MHC-I molecules to DCs, which induced potent
CD8+ T cell-dependent antitumor effects on mouse tumors [111,116].
HSP70 on the exosome surface also stimulated NK cell migration and
cytolytic activity [117], macrophage activity [118] and induced
stronger anticancer immune responses of helper T cells [119]. Exo-
somes derived from RAB27A-overexpressing tumor cells were capable
of upregulating MHC-II, CD80, and CD86 on DCs, in turn promoting
CD4+ T cell proliferation [120]. Exosomes from patients’ melanoma
delivered MART1 tumor antigens to DCs for cross-presentation to cy-
totoxic T lymphocytes specific to MART1 [121].

Exosomal DNA regulates tumor-associated inflammation and im-
munity. Guan and colleagues reported nucleic acid-rich EVs released
from Hippo pathway kinase LATS1/2-depleted tumor cells induced
antitumor immunity by stimulating the TLR-IFN pathway, whereas
cancer cells with high LATS1/2 expression suppressed cancer immunity
[122]. Treatment of breast cancer cells with the antitumor agent to-
potecan that triggered DNA double-strand breaks can induce exosome
release. Consequently, exosomal DNA derived from topotecan-treated
cancer cells triggered DC activation and subsequent CD8+ T cell acti-
vation via CGAS-STING signaling [123].

The capacity of exosomes to express antigens and MHC complexes
and induce helper T cell immune responses raises the possibility that
exosomes could be used as anticancer vaccines. Remarkably, ApoEVs
from melanoma B16-ovalbumin provided the highest antitumor pro-
tection compared to microvesicles and exosomes. Mice immunized with
ovalbumin-pulsed ApoEVs vaccine had significantly longer tumor-free
survival than mice immunized with ovalbumin-pulsed exosome vaccine
or ovalbumin-pulsed microvesicle vaccine. Protection by ApoEVs
against melanoma challenge might be related to their expression of
proteins associated with “immunogenic cell death,” such as high-mo-
bility group box protein B1 (HMGB1) and calreticulin, on their surface
[124].

6.2. Pro-tumor immune reaction

Tumor exosomes also have exhibited strong pro-tumor immune re-
actions. Tumor cell-derived exosomes could inhibit T cell and NK cell
activation and promote regulatory T cell function [115,125]. For ex-
ample, cancer cell-derived exosomes expressed TGFβ and ligands for
NKG2D to downregulate the surface NKG2D expression on NK cells and
CD8+ T cells, thus blocked their activity [126,127]. Exosomes that
present FAS ligand, TNF-related apoptosis-inducing ligand, or galectin-
9 induced the apoptosis of activated T cells [128–130]. Exosomes re-
leased by melanoma cells stimulated high levels of reactive oxygen
species (ROS) in neighboring T cells to inhibit their function [131].
TGFβ in cancer exosomes upregulated the generation of Foxp3+ T
regulatory cells [132].

Three recent studies simultaneously showed cancer cell-derived
exosomes or EVs harboring PD-L1 which inhibited T cell functions,
thereby promoting tumor growth. One reported that breast cancer cell-
derived exosomes carried PD-L1, which was transferred to cancer cells
that lacked or expressed only low levels of PD-L1 and also blocked T cell
activity through interaction with programmed death protein, PD1 [57].
Another showed that PD-L1 was expressed on the surface of some
glioblastoma-derived EVs. PD-L1-containing EVs in the serum or plasma
of glioblastoma patients were positively correlated with tumor burden
[133]. The third reported that exosomes from human melanoma, breast
cancer, or lung cancer carried PD-L1 on their surface, and that in-
creased circulating exosomal PD-L1 can be used to predict patient re-
sponse to anti-PD1 therapy [134].

Besides regulating T cells, cancer-derived exosomes inhibit the ac-
tivity of DCs and increase the expansion of myeloid-derived suppressor
cells (MDSCs). Pancreatic cancer-derived exosomes were found to in-
hibit DC cytokines via downregulation of TLR4 expression by miR-203
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[135]. Lung cancer-derived exosomes blocked DC differentiation via
downregulation of surface markers, including CD80, MHC-II, and CD86,
but upregulated CD11B and PD-L1 expression [136]. Tumor exosomes
converted myeloid cells to MDSCs by secreting PGE2 and TGFβ [137],
or IL6, TNFα, and CCL2 [138]. They also activated MDSCs and trig-
gered their suppressive function in an HSP72/TLR2-STAT3–dependent
manner [139,140]. In glioma and lung carcinoma mouse models, exo-
some-recipient cells were mainly CD45+ leukocytes; among them,
CD11b+Gr1+ MDSCs is the major subpopulation. After taking up
cancer-derived exosomes, the immunosuppressive function of the
MDSCs was enhanced [141]. The hypoxia-inducible expression of miR-
10a and miR-21 in glioblastoma exosomes mediated MDSC expansion
and activation through downregulation of RAR-related orphan receptor
alpha (RORA) and PTEN in MDSCs [142].

Tumor cell-derived exosomes also stimulate the polarization of
macrophages towards the cancer-promoting M2 phase. For example,
breast cancer-derived exosomes altered macrophage polarization to M2
phase via glycoprotein 130/STAT3 signaling. Specifically, glycoprotein
130 was enriched in the cancer-derived exosomes, which activated the
STAT3 pathway in bone marrow-derived macrophages, resulting in IL6
secretion and polarization to M2 phase [143]. SNAIL-expressing human
head and neck cancer cells produced miR-21-enriched exosomes, which
were engulfed by CD14+ human monocytes, in turn, suppressed the
expression of M1 markers and increased that of M2 markers [144]. In
hypoxic conditions, pancreatic cancer cell-derived exosomes induced
macrophages to the M2 phenotype in a HIF1α or HIF2α-dependent
manner, thereby facilitating the migration, invasion, and EMT of cancer
cells [145]. Colon cancer cells harboring mutant p53 selectively shed
miR-1246-enriched exosomes, which triggered neighboring macro-
phages into the cancer-promoting M2 phase with increased activity of
TGFβ [146]. Breast cancer cell-derived exosomes transferred activated
EGFR to host macrophages, which inhibited their production of type I

interferons and antiviral immunity, resulting in compromise of innate
immunity [147]. Additionally, tumor cell-derived exosomes also in-
duced PD-L1 expression in macrophages. Gastric cancer-derived exo-
somes effectively induced generation of PD-L1+ tumor-associated
macrophages and impaired CD8+ T cell function via IL10 [148], while
glioblastoma-derived exosomes traversed to the monocytes, the pre-
cursor to macrophages, and skewed them toward the immune-sup-
pressive M2 phenotype, inducing PD-L1 expression via activation of
STAT3 or phosphorylated p70S6 kinase and ERK1/2 [149]. A complex
report indicated that oral squamous cell carcinomas-derived exosomes
transferred TSP1 to polarize macrophages to the M1-like phenotype,
which were activated through P38 MAPK, AKT, and SAPK/JNK sig-
naling at the early phase. However, it was found that exosome-activated
M1 macrophages still had a pro-tumor effect because they significantly
facilitated the migration of the cancer cells [150]. Similarly, melanoma-
or breast cancer-derived exosomes activated M1 macrophages to se-
crete pro-inflammatory cytokines through stimulation of the NF-B
pathway, but these macrophages still facilitated cancer metastasis and
immune escape [151,152].

Therefore, exosomes exert both immune-activating and immune-
suppressive functions in cancer. The effect of activating immunity
mainly depends on antigen presentation by exosomes, while the effect
of exosomes’ immune inhibition mainly depends on their carried li-
gands, proteins, and miRNAs, which inhibit the activity of cytotoxic T
cells or increase immune-suppressive cells (Fig. 4). Understanding the
underlying mechanisms of both functions should benefit efforts to
target or utilize exosomes in cancer treatment.

7. Exosomes as therapeutic tools

Exosomes are a type of natural nanoparticle bio-vehicle, which are
stable, membrane-permeable, and can even pass through the BBB.

Fig. 2. Functions of cancer cell-derived
exosome in tumor progression and metas-
tasis. Tumor-derived exosomes (1) inhibit
apoptosis of tumor cells through secretion
of TGFβ1 or other ligands and (2) pump
cytoplasmic DNA out for cellular home-
ostasis. (3) Exosomes expel cytotoxic drugs,
resulting in tumor cell drug resistance. (4)
Tumor-derived exosomes transfer their
cargos (such as EGFRVIII, KRAS, SRC,
TGFβ1, EMT drivers, PDL1, GSTP1,
lncRNAs, or miRNAs) to other tumor cells to
induce EMT, migration, and invasion, or
drug resistance in recipient cells, thereby
promoting tumor progression and metas-
tasis. Tumor exosomes can (5) reprogram
the ECM through proteinase, MMP2, or
tetraspanins, or (6) induce fibroblast dif-
ferentiation to myofibroblasts through
TGFβ1, which further induces ECM de-
gradation; they also can (7) enhance en-
dothelial cell proliferation and angiogenesis
by transferring soluble E-cadherin (SE-Cad),
DLL4, tetraspanins, or miRNAs, and (8)
open tight junctions in endothelial cells by
miRNAs, resulting in tumor progression and
metastasis. (9) Tumor exosomes carry spe-
cific integrins, macrophage-inhibitory
factor, mRNAs, or miRNAs, which allow
them to establish pre-metastatic niches in
lymph nodes, bone, liver, lung, and brain.
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Because exosomes “recognize” specific cells, delivery of therapeutic
cargos by exosomes can have better efficacy and fewer off-target effects
than other bio-vehicles, such as liposomes. Therefore, exosomes have
become a promising tool for delivery and transfer of drugs, miRNAs,
small-interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), and
other compounds that remain stable in exosomes for the treatment of
cancer and other diseases [153]. Several strategies for improving exo-
somes’ tumor cell-targeting specificity and uptake by tumors have been
reported; for example, exosomes were engineered to express target li-
gands such as lysosome-associated membrane protein 2b (LAMP2B) and
a tumor-targeting integrin [154]. An impressive example of exosomes
delivering siRNAs or shRNAs that depleted oncogenes to inhibit tumor
growth was reported by Kalluri and colleagues. They purified CD47+

exosomes from the supernatants of human fibroblast cultures and then
introduced siRNA or short hairpin RNA (shRNA) that targeted oncogene
KRASG12D [51]. This kind of engineered exosome (iExosomes) have a
reduced clearance from monocytes and macrophages while increasing
the uptake by the tumor cells. In a study, treatment of pancreatic
tumor-bearing mice with iExosomes that specifically target KRAS-mu-
tant tumor cells suppressed metastasis and dramatically prolonged
survival [51], demonstrating the potential of exosomal miRNA-based
approaches for effective targeting of KRAS or other mutations in cancer
patients.

Strikingly, exosome-mediated delivery of drugs or siRNAs can pass
the BBB. DC-derived exosomes delivered siRNAs to the brain in mice.
Alvarez-Erviti et al. transduced the DCs to express exosomal membrane
protein LAMP2B, which was fused to the neuron-specific RVG peptide.
Purified DC exosomes were loaded with exogenous siRNA targeting
BACE1, which is important in the pathogenesis of Alzheimer disease;

these iExosomes were then intravenously injected into mice. The exo-
somes specifically entered neurons, microglia, and oligodendrocytes in
the brain, resulting in knockdown of the BACE1 gene in the mouse
model. This study demonstrated the feasibility of exosome-specific
systemic delivery and, more importantly, shows that exosome can pass
biological barriers, shedding light on the possibility of new RNAi-based
therapy for brain tumors, brain metastases, and neurodegenerative
diseases [155].

Plant-derived EVs are also used to efficiently deliver drugs, siRNAs,
or proteins to specific cells or tissue such as intestine, colon or liver
[156]. Plant-derived EVs have several benefits: they are edible, low
toxicity and easily scaled up for mass production. It was reported that
grapefruit-derived EVs delivered STAT3 inhibitor JSI-124 to prevent
mouse glioblastoma tumor growth, when grapefruit-derived EVs were
intranasally administrated. Grapefruit-derived EVs also can co-deliver
paclitaxel with folic acid to increase the targeting efficiency to CT26 or
SW620 colon cancer cells which express folate receptors. These EVs
inhibited colon cancer growth in the mouse model [157].

Another promising area for exosomes is in anticancer vaccination,
because exosomes can deliver or present tumor-derived antigens that
activate cytotoxic T cells. One good example is the DC exosome vaccine.
DC-derived exosomes express MHC-I and MHC-II molecules and in-
duced antitumor immunity. Compared to DC vaccine, which is rapidly
eliminated by antigen-specific cytotoxic T lymphocytes, the DC-derived
exosome vaccine is relatively long-lived, and thus is considered an al-
ternative to and replacement for DC vaccine. DC-derived exosome
vaccines have been tested in several phase I clinical trials [158–161]. In
these clinical trials, no grade 2 or greater toxicity was observed, in-
dicating the safety of exosome administration. In a follow-up phase II

Fig. 3. Examples of stromal cell-derived exosomes in tumor progression and metastasis. 1a) Activated fibroblasts secrete exosomes that are taken up by cancer cells
and that transfer unshielded RNAs, protein ADAM10, metabolic cargos, and other molecules, to induce inflammation, tumor growth, drug resistance, cancer cell
motility and/or cancer stem cell phenotypic traits. 1b) Fibroblast-secreted CD81-positive exosomes are loaded with WNT11 by cancer cells, and these exosomes
promote cancer cell motility and metastasis through an autocrine mechanism. 2) Macrophage-derived exosomes promote pancreatic cancer cell resistance to
gemcitabine through miR-365. 3) Astrocytes promote the outgrowth of brain metastasis through exosomal miR-19a. 4) Bone marrow mesenchymal stem cells induce
bone metastasis dormancy through exosomal miR-23b.
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clinical trial testing the clinical benefit of DC exosomes for patients with
non-small cell lung cancer after chemotherapy cessation, patients were
administered granulocyte macrophage–colony-stimulating factor (GM-
CSF) and IL4 to stimulate production of DCs from monocytes; the DCs
were then induced to mature with IFNγ and loaded with MHC-I and
MHC-II restricted cancer antigens. Exosomes were isolated from these
modified DCs and injected into the patients. No objective tumor re-
sponse nor detectable T cell response was identified in this clinical trial,
but NK cells were activated [162]. Although the phase II clinical result
is not as favorable as expected, hope remains that DC-derived exo-
somes, after further optimization, represent a viable new vaccine
strategy for cancer immunotherapy. In one of the phase I clinical trials,
exosomes isolated from ascites of patients with colon cancer were in-
jected into the patients as a vaccine. Administered with GM-CSF, the
ascites-derived exosomes were safe and well tolerated and yielded a
tumor-specific antitumor cytotoxic T cell response [160]. However, as
already described, tumor-derived exosomes carry numerous oncogenes,
mRNAs, and miRNAs, which induce tumor progression and metastasis,
besides tumor antigens, the safety of tumor-derived exosome vaccine is
still uncertain.

Given that cancer cell-derived exosomes can induce angiogenesis,
promote metastasis, and modify pre-metastatic niches [104], a third
potential clinical application of exosomes in cancer is depleting tumor
exosomes from the circulatory system in order to block cancer metas-
tasis. Inhibiting exosome assembly and release from tumor cells via
inhibitors [139] or shRNAs [25], or eliminating exosomes from cancer
patients’ circulation by extracorporeal purification, reduces numbers of
exosomes in the circulation. For example, the ADAPT system is de-
signed to selectively capture and remove circulating HER2+ exosomes
[163]. Recently Datta et al. screened 4580 compounds to identify those
that modulate exosome biogenesis and/or release by aggressive

prostate cancer cells. Twenty-two of these compounds were found to be
either potent activators or inhibitors of exosomes. The potent in-
hibitors, including tipifarnib, neticonazole, climbazole, ketoconazole,
and triadimenol, might be utilized to deplete exosomes in cancer pa-
tients [164].

In summary, substantial evidence supports the application of exo-
somes for cancer treatment based on experiments in cell cultures or
experimental models. Currently, however, only a few clinical trials of
exosome for cancer therapy are underway. The main challenges of
exosome application in the treatment of cancer or other diseases in-
clude, but are not limited to, 1) how to efficiently load exogenous
miRNAs, siRNAs, shRNAs, or drugs into exosomes and further increase
cell-specific delivery; 2) how to prevent immune reactions when uti-
lizing non-autologous exosomes, which carry MHC-I or II; 3) how to
increase cytotoxic T cell activation when using DC exosomes as a vac-
cine; 4) how to prolong the half-life of exosome vaccines or bioengi-
neered exosomes in the body and avoid rapid clearance by immune
cells, liver, or kidney; 5) how to prevent, when depleting tumor-derived
exosomes from the blood of patients, the loss of non-tumor-promoting
exosomes and their physiological function in the whole body; and 6)
how to control the quality of exosomes to be administered to patients
and the technological challenges related to clinical grade production
[165]. Because of the complexity of exosome biology and these clinical
challenges, carefully developing standard criteria for exosome quality
and improving their efficacy in vivo are crucial before widely em-
ploying exosomes in clinical trials.

8. Exosomes as biomarkers

Besides the treatment of disease, other significant applications of
exosomes include their use as biomarkers for disease diagnosis and

Fig. 4. Exosomes’ functions in tumor immunity. A. Anti-tumor immune response: Tumor exosomes present neo-antigens (such as HSP70, MART1) with MHC-I
complex to dendritic cells (DCs) or directly to activate T cells. Tumor exosomes increase CD80, CD86, and MHC-II expression in DCs, which further activates CD4+ T
cells. Exosomal DNAs trigger activation of DCs and CD8+ T cells. Tumor exosomes induce the activation of natural killer (NK) cells and macrophages by transferring
HSP70. DCs release exosomes containing the antigens and MHC-I complex to activate cytotoxic T cells to inhibit tumor growth. B. Pro-tumor immune response: tumor
exosomes also repress the function of DCs, T cells, and NK cells, enhancing the populations of myeloid-derived suppressive cells (MDSCs) and regulatory T cells (Treg)
and skewing macrophage function toward the M2 phenotype through various signaling pathways. Tumor exosomes carry PD-L1 from tumor cells and transfer it to
DCs or macrophages, and then block T cell function.
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prognosis. Because exosomes can be detected in bodily fluids such as
blood, urine, saliva, and cerebrospinal fluid, they represent ideal non-
invasive or less-invasive biomarkers for cancer diagnosis. For example,
double-stranded DNAs in exosomes can be used as clinical biomarkers
for cancer diagnosis because they reflect mutations in primary and/or
metastatic cancer cells [44]. Circulating exosomal DNA enabled the
detection of KRASG12D and TP53R273H mutations, which are potential
biomarkers of pancreatic cancer [166]. Additionally, PD-L1 level on
exosomes from plasma was associated with disease progression in head
and neck cancers [167,168] and predicted melanoma patient response
to treatment with PD1 antibody [134]. Furthermore, certain proteins or
miRNAs in exosomes isolated from cancer patient plasma are associated
with tumor metastasis or relapse [169,170]. Elevated expression of
miRNA-191, -21, and -451a in serum exosomes seems to be a biomarker
of pancreatic cancer [171]. miRNA analysis of EVs or exosomes from
cerebrospinal fluid showed that miR-21 can serve as a biomarker for
glioblastoma development and prediction of tumor recurrence or me-
tastasis [172,173]. Circulating exosomal miR-17-5p and miR-92a-3p
were associated with pathologic stage and grade of colon cancers [174].

Although numerous publications present various exosomal miRNAs
as potential biomarkers of breast cancer, prostate cancer, pancreatic
cancer, melanoma, and other cancers, their utilization as clinical bio-
markers still faces challenges. Most of these exosomal miRNA studies
were conducted in a small patient cohort or only in a mouse model. In
these studies, miRNA levels in plasma exosomes varied widely in the
single cohort, and results from different groups were heterogeneous
even when studying the same cancer type. The methods of exosome
isolation from plasma and miRNA extraction from exosomes were not
identical in the various study groups, and the studies lacked a common
endogenous miRNA control for quantification of exosomal miRNAs.
These problems affect the reliability of circulating exosomal miRNAs as
cancer biomarkers in clinical diagnosis or prognosis.

Kalluri and colleagues discovered a serum exosomal biomarker for
pancreatic cancer [175]. The exosomes from pancreatic cancers ex-
pressed at high levels a cell surface proteoglycan, glypican-1 (GPC1),
which can be detected in serum as a highly sensitive and specific bio-
marker of pancreatic cancer, better than classic biomarker CA19-9
[175]. GPC1+ exosomes in serum can distinguish patients with pan-
creatic cancer from normal individuals and from patients with benign
pancreatic disease. GPC1+ exosome level was found to be associated
with tumor burden and patient survival [175]. Following this finding,
however, Lai et al. compared circulating exosomal GPC1 and miRNA
levels in healthy subjects and in patients with pancreatic carcinoma or
chronic pancreatitis and found that circulating exosomal GPC1 was not
a good diagnostic marker for carcinoma. They found, in contrast, that
high levels of miR-10b, miR-21, miR-30c, and miR-181a and a low level
of miR-let7a in exosomes more reliably and promptly differentiated
pancreatic carcinoma from normal controls and patients with benign
pancreatic disease in their cohort relative small cohort [176]. The
discrepancies between these two reports might be due to different
methods used to detect circulating exosomal GPC1. The first group
quantified exosomal GPC1 by an antibody-based assay, whereas the
second group used liquid chromatography-tandem mass spectrometry.
While these findings exemplify the power of utilizing exosomes for
cancer diagnosis, the inconsistency indicates that GPC1 as a biomarker
of pancreatic cancer requires further validation in larger patient cohorts
and also highlights the importance of standardized methodologies for
identifying exosomal biomarkers.

Another good example of exosomal protein as a biomarker is the
urine exosome gene expression assay for prostate cancer. This assay
detects RNA expression of ERG, PCA3, and SPDEF, which have known
functions in prostate cancer initiation and progression. As a screening
test, the urine exosome gene expression assay result combined with
standard clinical data, comprising of prostate-specific antigen (PSA)
level, age, race, and family history, can improve identification of pa-
tients with higher-grade prostate cancer over elevated prostate-specific

antigen level alone, thereby reducing the number of unnecessary
biopsies [177]. A urine-based liquid biopsy platform for the exosome
gene expression assay, ExoDx Prostate (IntelliScore), has been devel-
oped for non-invasive detection of prostate cancer and there is an is
ongoing clinical trial investigating the reliability of this urine test in
predicting high-grade prostate cancer at the time of initial prostate
biopsy.

In summary, applying exosome biomarkers in cancer diagnosis re-
quires high sensitivity and specificity. Many miRNAs or proteins carried
by exosomes have been considered as potential biomarkers, but the
sensitivity and specificity of these candidates were not as good as the
classic serum biomarkers of cancer, and most have not shown a prog-
nostic or diagnostic significance in large patient cohorts. The tech-
nology of isolating exosomes from the serum, urine, or other bodily
fluids and the methods of quantifying miRNAs or proteins also need to
be further standardized.

Since research on these applications of exosomes is on the fast track,
diagnostic applications of exosomes in cancer has an optimistic future.

9. Conclusion

Looking back over the more than 35-year history of exosome in-
vestigations, it is remarkable how rapidly our knowledge of exosomes
has expanded. A multitude of studies have explored the functions of
exosomes under different physiologic and pathologic conditions.
Several hallmarks of exosomes have emerged, especially in cancer
biology. First, extensive evidence shows that exosomes are not merely
waste particles but rather critical mediators of intercellular commu-
nications. The cells control the cargos inside exosomes, with the effect
of changing their own fate or that of other cells. As satellites of host
cells, exosomes, contain substantial bio-information and function be-
yond initial expectations. Second, exosomes have a robust impact on
tumor progression and metastasis. Strikingly, exosomes can predict
sites of metastasis and build pre-metastatic niches, depending on their
interactions with stromal cells. Third, exosomes can induce both ef-
fective pro-tumor and antitumor immune responses, but cancer cell-
derived exosomes show much stronger immune suppression than im-
mune activation in the advanced stage. Exosome vaccines, based on
exosomes carrying antigens, are being tested in clinical trials. Given the
specific characters of exosomes, their use as a new platform for cancer
therapy and as cancer biomarkers is promising despite the technical
challenges. Deep understanding of the mechanisms underlying exosome
function should advance their application in the clinic. It should be
noted that in many preclinical studies, the function of exosomes on
tumor progression or immunity was mainly determined by “gain-of-
function” experiments, such as the adoptive transfer of exosomes, and
this may not accurately represent the actual physiological function of
exosomes. Although blocking exosome secretion by knocking down
RAB27A or RAB27B was used for “loss-of-function” exosome pheno-
types in some studies, more rigorous "loss-of-function" techniques may
be required to thoroughly uncover the essential function of exosomes
and move the field further ahead. We anticipate that advances made in
the exosome field will lead to breakthroughs in clinical applications to
benefit patients.

Note

We apologize for not being able to cite all the relevant original re-
search and review articles due to space limitation.
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