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Rare insights into cancer biology
J Adam1, M Yang1, T Soga2,3 and PJ Pollard1,4

Cancer-associated mutations have been identified in the metabolic genes succinate dehydrogenase (SDH), fumarate hydratase (FH)
and isocitrate dehydrogenase (IDH), advancing and challenging our understanding of cellular function and disease mechanisms
and providing direct links between dysregulated metabolism and cancer. Some striking parallels exist in the cellular consequences
of the genetic mutations within this triad of cancer syndromes, including accumulation of oncometabolites and competitive
inhibition of 2-oxoglutarate-dependent dioxygenases, particularly, hypoxia-inducible factor (HIF) prolyl hydroxylases, JmjC domain-
containing histone demethylases (part of the JMJD family) and the ten-eleven translocation (TET) family of 5methyl cytosine (5mC)
DNA hydroxylases. These lead to activation of HIF-dependent oncogenic pathways and inhibition of histone and DNA
demethylation. Mutations in FH, resulting in loss of enzyme activity, predispose affected individuals to a rare cancer, hereditary
leiomyomatosis and renal cell cancer (HLRCC), characterised by benign smooth muscle cutaneous and uterine tumours
(leiomyomata) and an aggressive form of collecting duct and type 2 papillary renal cancer. Interestingly, loss of FH activity results in
the accumulation of high levels of fumarate that can lead to the non-enzymatic modification of cysteine residues in multiple
proteins (succination) and in some cases to their disrupted function. Here we consider that the study of rare diseases such as
HLRCC, combining analyses of human tumours and cell lines with in vitro and in vivo murine models has provided novel insights
into cancer biology associated with dysregulated metabolism and represents a useful paradigm for cancer research.
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DYSREGULATED METABOLISM: AEROBIC GLYCOLYSIS
Almost a century ago Otto Warburg reported that cancer cells
exhibited dysregulated metabolism compared with normal cells
and hypothesised that respiration defects in cells, and a slow
adaptation to enhanced aerobic glycolysis, constituted the
metabolic switch that caused cancer.1,2 Until recently, research
interest in this so-called ‘Warburg effect’ waned in favour of the
identification and investigation of the crucial role of ‘oncogenes’ in
cancer. That said, the enhanced aerobic glycolysis exhibited by
some cancer cells provides them with a characteristic signature
and results in increased dependence on glucose.3 This phenotype
has been exploited to image solid tumours through the use of
18fluoro-2-deoxy-glucose positron emission tomography, as
increased glucose uptake by tumour cells leads to accumulation
of labelled derivative.4 Cancer cell lines are routinely cultured in
medium containing very high levels of glucose (4.5 g/l; 25 mM),
approaching blood glucose levels observed in diabetic
individuals.5 Also, some cancer cells and tissues convert glucose
to lactate in normoxia (normal oxygen), a process that only occurs
in normal cells under conditions of hypoxia (reduced oxygen).6

Increased glycolysis is also associated with the hypoxia observed
in most solid tumours, or the pseudo-hypoxia characteristic of
cells deficient in fumarate hydratase (FH), succinate
dehydrogenase (SDH) and von-Hippel-Lindau protein (VHL).7,8

There are important caveats to associating cancer cells
exclusively with the ‘Warburg effect’; it is not specific to cancer
cells and many cancer cells do not exhibit it, retaining instead
mitochondrial respiration. In addition, glucose metabolism via

glycolysis cannot provide all the building blocks (for example,
nitrogen) required by a dividing cell such as for production of
biomass and DNA division.3 Hence, logically such cells require
other sources of fuel and need to adapt their use of other
metabolic pathways adding to a profile of dysregulated
metabolism. Therein may lie a key to understanding the
multiple steps in oncogenesis; cells are exquisitely adept at
adapting their metabolism as a stress response and such altered
metabolism may represent both a driving force in oncogenesis
and also an Achilles’ heel for therapeutic targeting.

DYSREGULATED METABOLISM: A ‘HALLMARK’ OF CANCER
Within the past decade there has been a major resurgence of
interest and excitement in the links between cancer and altered
metabolism, now identified as a ‘hallmark’ of malignancy.9 We
have entered a ‘golden era’ in metabolism studies increasing our
understanding of normal cell metabolism and an appreciation of
the extent and details of dysregulated metabolism associated with
cancer (Figure 1).10 New insights have come from multiple
sources; made possible as a result of the identification of
mutated metabolic enzymes leading to hereditary cancer
syndromes,11,12 and the use of exquisitely sensitive technologies
such as mass spectrometry and nuclear magnetic resonance,
combined with labelling of cellular metabolites.13 These
technologies also offer the capacity to analyse altered
metabolite levels in a clinical setting (Figures 2 and 3).14–16 The
development of in vivo murine models and assorted cell lines has
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also allowed for the analysis of early events following loss of
enzyme activity in these syndromes.17–25

In our own studies,26,27 we have used a variety of technologies
including capillary electrophoresis time-of–flight mass
spectrometry,28–30 which although it cannot analyse neutral
compounds and lipids, is a powerful tool for the simultaneous
analysis of most charged metabolites in central metabolic pathways
including the glycolytic, Krebs cycle and pentose phosphate
pathways. Metabolite labelling allows us to follow metabolic
pathways in an unbiased and non-disruptive way and, especially,
when linked to powerful computational analyses, offers the promise
to provide unique metabolic profiles of normal and diseased cells
and tissues.13 Although our knowledge base using these
technologies will continue to increase as more cells are analysed
under different conditions, the next challenge will be to dovetail the
results from these metabolite profiles with microarray data from
the same cells, or tissues, and ultimately genome-wide mutational

and epigenetic analyses. The requisite genomics data sets are
already available and will continue to accumulate.31

INSIGHTS FROM CANCER SYNDROMES
The discovery that tumor-associated mutations in SDH, IDH-1
and -2, and FH has given us extraordinary insights in cancer
biology with the expectation that further studies may similarly
implicate other members of metabolic pathways (Figure 1).32 Two
of these genes, SDH and FH, are classified as tumour suppressors
as affected individuals inherit one mutated copy of the relevant
gene, whereas the tumours exhibit loss of the wild-type allele
following a somatic ‘second event’ in keeping with Knudson’s
classic two-hit hypothesis.33,34 In contrast, isocitrate
dehydrogenase (IDH-1 and -2) mutations are somatic and
retain the wild-type allele; essentially they are gain-of-
function mutations.35 These cancers are rare; but provide direct

Figure 1. Candidate mechanisms for the oncogenic roles of (R)-2-hydroxyglutarate ((R)-2HG), succinate and fumarate. (R)-2HG is the product of
gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). Succinate and fumarate are
intermediates of the Krebs cycle. Loss-of-function mutations in the tumour-suppressor genes succinate dehydrogenase (SDH) and fumarate
hydratase (FH) cause intracellular accumulation of succinate and fumarate, respectively. These three oncometabolites (R)-2HG, succinate and
fumarate are sufficiently similar in structure to 2-oxogluratate (2OG) to inhibit a range of 2OG-dependent dioxygenases, including hypoxia-
inducible factor (HIF) prolyl hydroxylases (PHDs), histone lysine demethylases (KDMs) and the ten-eleven translocation (TET) family of
5-methylcytosine (5mC) hydroxylases. In turn, this leads to modulations of HIF-mediated hypoxia responses and alterations in gene expression
through global epigenetic remodelling that may contribute to malignant transformation. Separately, (R)-2HG has been shown in some
settings to act as a co-substrate for PHD2 in the prolyl hydroxylation of HIF1a, leading to cellular transformation as a result of reduced HIF
expression. In addition, fumarate can irreversibly modify cysteine residues in proteins via succination. The succination of Kelch-like
ECH-associated protein 1 (KEAP 1) on two cysteine residues in FH-deficient cells results in the constitutive activation of nuclear factor
erythroid 2-related factor 2 (NRF2), leading to the transcription of genes involved in antioxidant response. Succination of the Krebs
cycle enzyme aconitase 2 (ACO2) on three iron/sulphur-binding cysteine residues leads to impaired aconitase activity in FH-deficient
cells. Fumarate accumulation may also impact on cytosolic pathways potentially hampering the urea and purine nucleotide cycles. Ac-CoA,
acetyl coenzyme A; Cys, cysteine; OAA, oxaloacetate; Succ-CoA, succinyl coenzyme A; 2SC, succination of cysteine residues.
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evidence of a link between altered metabolism and cancer12 and
afford a unique opportunity to understand the consequences for a
cell of dysregulated metabolism.

SDH
SDH has two roles, to couple the oxidation of succinate to
fumarate in the Krebs cycle accompanied by the reduction of

ubiquinone to ubiquitinol, and as part of the mitochondrial
electron transport chain, designated complex II, participating in
the production of reduced flavin nucleotides, which support the
electron flow used for ATP synthesis.36 The enzyme complex is
comprised of four subunits encoded by four genes: SDHA, SDHB,
SDHC and SDHD, and is activated by SDH assembly factor (SDHAF2,
SDH5) encoding a protein involved in the incorporation of flavin
dinucleotide cofactor.37 SDH was the first mitochondrial enzyme

Figure 2. Oncometabolites as clinical biomarkers. Cancer syndromes associated with mutations in the metabolic genes, isocitrate
dehydrogenase (IDH)–gliomas, succinate dehydrogenase (SDH)–hereditary paraganglioma and pheochromocytomas (HPP) and fumarate
hydratase (FH)–hereditary leiomyomatosis and renal cell cancer (HLRCC), have a number of clear characteristic signatures that might allow for
both diagnosis and monitoring of patients. For example, the noninvasive imaging of tumours to detect high levels of (R)-2-hydroxyglutarate
((R)-2HG) or sensitive immunohistochemistry (IHC) assays. In the case of HLRCC, an antibody raised against S-(2-succino) cysteine (2SCP) can
identify FH-deficient cells sensitively and specifically, whereas IHC for SDHA and SDHB can distinguish between identify pheochromocytomas
and paragangliomas that are SDH-related. The dysregulated metabolism associated with these diseases offers realistic opportunities for
diagnosis and screening of patients via imaging such as 18fluoro-2-deoxy-glucose, glutamine and glutamate positron emission tomography,
magnetic resonance spectroscopy and magnetic resonance imaging. There is no reason, other than cost, that the use of sensitive research
technologies, such as mass spectrometry and nuclear magnetic resonance, cannot be extended into the clinic for screening purposes. A more
significant challenge is to identify patients and families in the early stages of disease progression, perhaps by means of serum biomarkers or
the like, in order that at-risk individuals have appropriate genetic testing and screening, are correctly diagnosed and are provided with
appropriate advice and care. Cys, cysteine; 2SC, succination of cysteine residues.

Figure 3. Immunohistochemistry for succination of cysteine residues (2SC) as a clinical biomarker for HLRCC. Immunohistochemistry for 2SC in
skin leiomyomata (a, b) and papillary renal cell cancer (c, d). Brown staining represents the presence of 2SC. Note the absence of staining in
sporadic tumours (a, c) and the presence of strong staining in HLRCC (FH-mutant) tumours (b, d). In a prospective study, the 2SC bioassay
outperformed conventional sequencing methods in identification of previously undiagnosed HLRCC cases.134
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to be associated with an inherited cancer syndrome and identified
as a tumour suppressor.38 Initially, mutations of SDHD were found
to be associated with familial paraganglioma, neural crest-derived
tumours that arise from parasympathetic ganglia of the head and
neck or sympathetic ganglia of the chest and abdomen, and
pheochromocytomas, tumours of the adrenal medulla.39

Subsequently, reduced SDH activity was observed in renal cell
carcinoma and papillary thyroid cancer associated with mutations
in SDHB and SDHC. Latterly, mutations in SDHA and SDHAF2 have
been found in familial and sporadic paraganglioma, pheochromo-
cytomas and in stromal tumours of the gastrointestine.40–46

Prognosis for patients harbouring SDHB germline mutations is
particularly poor, carrying a higher risk of metastatic cancer than
patients without the mutation.47–49

Although loss-of-function mutations have been identified in all
five SDH genes predisposing to cancer,32 little is known about the
mechanism for oncogenesis.50 The loss of SDH activity results in
accumulation of intracellular succinate.51 This leads to the
stabilisation of hypoxia inducible factor-1alpha (HIF1a) as a conse-
quence of competitive inhibition of prolyl hydroxylase domain
(PHD) 1, 2 and 3 enzymes, the 2-oxoglutarate (2OG)-dependent
dioxygenases that regulate HIF.52,53 Stabilisation of HIF1a is a
potential mechanism for oncogenesis as the transcription factor
can activate other pathways resulting in an angiogenic and
glycolytic response in SDH-mutated tumours.54–56 Elevated
succinate is also associated with enhanced production of
reactive oxygen species (ROS) that can induce DNA damage and
genome instability57 and increased apoptosis arising from
mitochondrial dysfunction.58–60

It has been demonstrated that both succinate and fumarate can
inhibit a number of 2OG-dependent dioxygenases in addition to
the PHDs. These include the JmjC domain-containing histone
lysine demethylases (KDMs)61 and the ten-eleven translocation
(TET) family of 5methyl cytosine (5mC) DNA hydroxylases,62–64

resulting in altered histone and DNA demethylation patterns
(Figure 1).65 TET has well-defined tumour-suppressor functions
and therefore inhibition of these enzymes might contribute to
SDH or FH-associated oncogenesis.66 Equally, alterations in
histone methylation might be expected to lead to epigenetic
changes that could promote oncogenesis.67–70 Furthermore,
identification and classification of epigenetic changes gives
opportunities for use as biomarkers as performed in other
cancers.71–73 Such biomarkers would be a valuable tool, in
addition to the use of immunohistochemistry for SDHA and
SDHB, to identify effectively the subset of pheochromocytomas
and paragangliomas that are SDH-related (Figure 2).74,75

IDH
IDH-1 and -2 located in the cytoplasm and mitochondria,
respectively, catalyse the reversible oxidative decarboxylation of
isocitrate to 2OG with the concomitant reduction of nicotinamide
adenine dinucleotide phosphate (NADPþ ) to NADPH.76 IDH
mutations are somatic, do not exhibit loss-of-heterozygosity and
are linked largely to hotspot arginine residues, Arg132 for IDH-1 and
the corresponding Arg172, or Arg140 in IDH-2 resulting in a single
amino-acid substitution in the enzyme active site. Sequencing of
gliomas (75% of grade 2–3 gliomas and secondary glioblastomas)
and acute myeloid leukaemia (20%) identified gain-of-function
mutations in one allele, in IDH-1, and less often in the IDH-2
homologue.77–80 IDH-1 and IDH-2 mutations in these and other
residues have now been identified in a bewildering number of
tumours including thyroid cancer, chondrosarcoma, enchondroma
(Ollier disease and Maffucci syndrome, where mosaic constitutional
mutations of IDH-1 and IDH-2 have been reported), melanoma,
paraganglioma, prostate cancer, b-acute lymphoblastic leukaemia,
angioimmunoblastic T-cell lymphoma and intrahepatic
cholaniocarcinoma.81–91 Metabolomic analyses have linked these

mutations in some cell lines and tumour tissues with neomorphic
enzymatic activity resulting in the production and accumulation of
the oncometabolite enantiomer (R)-2-hydroxyglutarate ((R)-2HG),
which is essentially non-existent in normal cells and cancer cells
lacking IDH-1/IDH-2 mutations.92 (R)-2HG is generated efficiently by
the NADPH-dependent reduction of 2OG when both mutant and
wild-type alleles are present. It has been proposed that (R)-2HG
competitively inhibits multiple 2OG-dependent dioxygenases,
including the PHDs, KDMs and the TET family of 5mC hydroxylases
(Figure 1).93–96 Inhibition of KDMs and TETs linked to DNA
methylation alterations have been suggested as a possible
explanation for the hypermethylation observed in gliomas bearing
IDH-1 mutations97 and the pattern of mutations in acute myeloid
leukaemia.98,99

At variance with this hypothesis it has been shown in human
astrocytes in culture that (R)-2HG, but not (S)-2HG, stimulates PHD
activity with consequent reduction in levels of HIF expression. This
is linked with the evidence of tumorigenesis, exhibited by
increased proliferation and an ability to grow in semi-solid
agar.100 Also, it has been demonstrated using a human
erythroleukaemic cell line that a stably infected IDH-1 R123H
mutation results in increased (R)-2HG and promotes growth factor
independence, enhanced proliferation and impaired
differentiation; all characteristics of leukaemogenesis. These
features can be mimicked by addition of (R)-2HG to the parental
cell line, but not (S)-2HG, despite the fact that (S)-2HG is a potent
inhibitor of TET2. This striking anomaly has been attributed to the
fact that in some settings, such as those described above in
human astrocytes, (R)-2HG acts as a PHD2 agonist, whereas (S)-
2HG acts an antagonist. The implication is that promoting PHD2
activity results in cellular transformation, as inhibition of PHD2 by
(S)-2HG prevents such transformation.101 Surprisingly, the
alterations in growth factor independence mediated by the
action of (R)-2HG can be rapidly reversed. These data were
generated in vitro and highlight again contradictory; but not
mutually exclusive results, obtained from different models and the
difficulties of integrating these with analyses of tumours. That said,
further investigation and corroboration of the results in other
settings such as a mouse model would offer the promise of an
exciting therapeutic strategy.

FH
Although generally considered a mitochondrial enzyme, function-
ing within the Krebs cycle to catalyse the conversion of fumarate
to malate, FH is also expressed in the cytoplasm, where it acts to
metabolise fumarate that participates in the urea cycle, nucleotide
and amino-acid metabolic pathways,102,103 and in the nucleus
where it is thought to be involved in the cellular response to DNA
damage.104,105 Germline loss-of-function mutations in FH
predispose affected individuals to hereditary leiomyomatosis
and renal cell cancer (HLRCC), an under-diagnosed syndrome,
characterised by benign but painful smooth muscle cutaneous
and uterine tumours (leiomyomata) and an aggressive form of
collecting duct and type 2 papillary renal cancer.106–108 The renal
tumours carry a poor prognosis as they metastasise rapidly both
nodally and systemically, even if the primary tumour is small.109,110

COMPETITIVE INHIBITION OF 2OG OXYGENASES BY ELEVATED
FUMARATE
Loss of FH in cells and tumours results in the accumulation of high
levels of fumarate.23,51,111 Initially, mitochondrial dysfunction and
in particular the stabilisation of HIF-1a leading to activation of
HIF-dependent oncogenic pathways provided the accepted,
but unsubstantiated, hypotheses for the neoplasia associated
with HLRCC.112 It had been known for some time that
FH-associated tumours exhibit stabilisation of HIF23,51,113 and as
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with SDH-deficient cells two possible mechanisms were proposed
by which this could occur. Either enhanced reactive oxygen
species (ROS) production could result in HIF stabilisation in FH-
deficient cells114 and/or fumarate could competitively inhibit 2OG-
dependent dioxygenases that control levels of HIF.115–117 In
normal cells prolyl hydroxylation occurs at two sites in a
degradation domain within HIFa, thus promoting binding to the
VHL E3 ligase complex and subsequent proteolysis by the
ubiquitin-proteasome pathway; asparaginyl hydroxylation blocks
co-activator recruitment and thus reduces transcriptional
activity.7,118 HIF prolyl hydroxylation is catalysed by three related
enzymes PHD- 1, -2 and -3; whereas asparaginyl hydroxylation is
catalysed by factor inhibiting HIF (HIF1AN/FIH).119,120 To address
these questions, we generated a panel of four immortalised
mouse embryonic fibroblast (MEF) cell lines from a conditional
FH1 knockout (KO) mouse model:17 FH1WT, FH1KO and isogenic
FH1KO MEFs, reconstituted with either full-length FH
(FH1KOþ FH) or cytosolic-restricted FH by deleting the
mitochondrial targeting sequence (FH1KOþ FHcyt).121 Our
studies demonstrated that FH1KO MEFs exhibited impairment of
HIF prolyl hydroxylation; but not asparaginyl hydroxylation that
could be ameliorated by the addition of 2OG. Furthermore, re-
expression of cytoplasmic FH in FH1KO MEFs (FH1KOþ FHcyt) was
sufficient to reduce intracellular fumarate levels and to restore the
normal pathway of HIF degradation, despite continuing to exhibit
defective mitochondrial oxidative metabolism.121 Thus, as for
succinate and (R)-2HG, HIF1a stabilisation occurred as a
consequence of competitive inhibition of 2OG-dependent
dioxygenases by fumarate in addition to KDMs and TET proteins
as described above.117 This was an important finding as it
supported the hypothesis that fumarate may act as an
‘oncometabolite’ (Figure 1).122 Significantly, it also implied that
cytoplasmic FH may have an important role in dysregulated
metabolism associated with cancer.

DOES HIF INITIATE ONCOGENESIS?
HIF stabilisation, leading to pseudohypoxia and activation of HIF-
dependent pathways, is a characteristic feature of loss of FH-
human tumours, human and murine cells and the hyperplastic
renal cysts in the FH1KO mouse model17,27,51,111 and represented
a real candidate to drive oncogenesis.23,34 Renal cysts are
considered an early stage in carcinogenesis of hereditary renal
cancer syndromes including HLRCC and VHL disease as the cystic
epithelium often exhibits dysplastic changes and/or the
development of tumours.123,124 To determine whether HIF was
important in initiating renal tumour formation in FH deficiency, we
generated multiple murine models with combined inactivation of
FH1 and either HIF1a or HIF2a, or HIF1a and HIF2a and as a
control, mice in which PHD1, 2 and 3 were inactivated. PHD triple
knockout mice did not develop cysts while inactivation of HIF1a,
but not HIF2a actually exacerbated renal cyst formation.27 Thus,
we concluded that the formation of renal cysts is both HIF- and
PHD-independent and that HIF is not the initiating driver of
tumorigenesis. However, the continued stabilisation of HIF and
activation of HIF-dependent pathways, including increased
expression of glucose transporters and glycolytic enzymes,
cannot be discounted from a later role in cancer progression.125

These findings implied that other players and mechanisms must
have a role(s) in FH-associated oncogenesis and that the disease
progression could be considered in a stepwise manner. Also, this
suggests other potential parallels between cancer syndromes
associated with SDH, IDH and FH.8

ELEVATED FUMARATE LEADS TO SUCCINATION
An important and novel mechanism linked to FH loss stems from
the ability of fumarate to act as an endogenous electrophile,

reacting with free sulphydryl groups to make a thioether linkage
with cysteine residues in multiple proteins, via a Michael addition
reaction. This process, termed succination, results in the formation
of S-(2-succino) cysteine (2SC).126–128 Succination, first identified in
diabetic models, was postulated to occur as a consequence of
mitochondrial stress in adipocytes cultured in high glucose
(30 mM, compared with physiological levels of 5 mM), in the
skeletal muscle of rats treated with streptozotocin to induce
type I diabetes and in adipose tissue of ob/ob type 2 diabetic
mice.129–131 It is hypothesised that the increased glucose results in
elevated ATP/ADP, NADH/NADþ and mitochondrial membrane
potential and that the increased NADH/NADþ inhibits
oxidative phosphorylation leading to fumarate accumulation and
succination.132

As outlined earlier, fumarate accumulation in HLRCC tumours is a
key feature of loss of FH activity and it has been shown convincingly
that immunohistochemistry for 2SC can provide sufficient sensitivity
and specificity for its use as a reliable biomarker of HLRCC in
research and clinical settings (Figures 2 and 3).133,134

Crucially, post-translational modification of cysteine residues in
proteins can lead to disruption or loss of function, as demon-
strated in the inactivation of glyceraldeyde-3-phosphate dehy-
drogenase in diabetic models.130,131 Such modifications have
important consequences for the physiology and pathology of FH-
deficient cells, renal cysts and tumours. In normal cells, Kelch-like
ECH-associated protein 1 (KEAP1), part of an E3 ubiquitin ligase
complex, targets the transcription factor, nuclear factor erythroid
2-related factor 2 (NRF2), for degradation.135 It has been shown
that in FH-deficient cells and tumours, succination of key cysteine
residues (Cys151 and Cys288) in KEAP1 leads to abrogation of its
interaction with NRF2 allowing nuclear accumulation of NRF2,
enhanced binding to antioxidant response elements136,137 and
activation of the potentially oncogenic NRF2-mediated anti-
oxidant defence pathway27,138 (Figure 1). Furthermore, this
pathway has been shown to be activated in sporadic papillary
renal cell carcinoma as a consequence of somatic mutations in
NRF2, CUL3 and SIRT1 strengthening the argument for a role for
NRF2 in tumorigenesis.139 NRF2 activation has also been shown to
modulate cell metabolism under the control of P13K-Akt
signalling, possibly augmenting the cellular stress response, by
directing both glucose and glutamine into pathways that enhance
purine synthesis and contributing to cell proliferation through its
action on the pentose phosphate pathway.140 As yet we have no
data to explain why activation of NRF2 is important for the
proliferation of FH-deficient cells; but this is an active area of
research. It would be interesting to combine inactivation of NRF2
and FH1 in vivo to determine whether the cystic phenotype is
ameliorated and to analyse alterations in the metabolic profile of
tissue and cells lacking the function of both proteins. Elucidation
of the functional consequences of KEAP1 succination prompted us
to search for other 2SC targets that may contribute to the
pathogenesis of FH-associated disease and dysregulated
metabolism.122 This has revealed loss of mitochondrial aconitase
(ACO2) activity in FH-deficient cells as a consequence of
succination of three cysteine residues required for iron-sulphur
cluster binding,26 thus potentially contributing to their
dysregulated metabolism (Figure 1).

MITOCHONDRIAL DYSFUNCTION
Mitochondrial dysfunction results in loss of ability to trigger
apoptosis and increased levels of reactive oxygen species (ROS)
that can cause mutagenic damage to DNA. This has been linked to
FH associated cancer.34 Normally, ROS levels are tightly controlled
by antioxidant pathways that are acutely regulated by NRF2 in
response to cellular stress.141,142 In contrast, it seems that NRF2 is
permanently activated in some cancers, leading to increased
detoxification of ROS.143 Studies interrogating this mechanism
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through expression of oncogenic alleles, including Kras and Myc,
have shown that these oncogenes increase the activity of NRF2
and the antioxidant programme and lower cellular ROS.144 These
results may be significant in light of the observation that the NRF2
antioxidant pathway is activated in cells lacking FH.125 Also, haem
oxygenase-1, involved in haem degradation, is a target for NRF2.
The pathway of haem synthesis from glutamine is upregulated in
FH-deficient cells and it has been shown that inhibition of this
pathway, and haem oxygenase-1 in particular, leads to synthetic
lethality with FH-deficiency.145 Clearly, further studies are required
to investigate the role of NRF2 in HLRCC. There are also multiple
other unresolved questions about the role of the mitochondria in
FH-deficient cells, such as whether the mitochondrial membrane
potential and permeability is altered, and whether autophagy is
increased in this environment.

A ROLE FOR CYTOPLASMIC FH
FH metabolises fumarate generated from arginine synthesis and
the purine nucleotide cycle in the cytoplasm.36,146 Using the panel
of MEFs, we have shown that re-expression of cytosolic FH reduces
fumarate levels in part and ameliorates constitutive activation of
both the hypoxia and antioxidant response pathways in FH1-null
cells, despite a persistent defect in oxidative metabolism.27,121

Recently, through metabolomic analyses we have been able to
demonstrate that FH1KO cells and tissues exhibit defects in the
urea cycle/arginine metabolism and that acute arginine depletion
reduced significantly the viability of FH1-deficient cells in
comparison to controls. Also, re-expression of cytosolic FH
in vivo ameliorated both renal cyst development and urea cycle
defects associated with renal-specific FH1 deletion in mice. Our
findings highlight the importance of extra-mitochondrial
metabolic pathways in FH-associated oncogenesis.147

ALTERED CELLULAR METABOLISM IN FH-DEFICIENT CELLS
Loss of a functioning Krebs cycle poses real metabolic challenges
to FH-deficient cells. Contradictory results based on different
cellular models (MEFs, murine renal cells and the human cell
line UOK262) have highlighted various different mechanisms
by which these cells respond to this metabolic challenge. Human
and murine FH-deficient cells exhibit upregulation of aerobic
glycolysis and impaired respiration.114,121 Elevated glutaminolysis
has been observed in FH1-deficient murine renal cells, suggesting
glutamine is an important source of carbon for the Krebs cycle.145

Metabolomic analyses of UOK262 cells have demonstrated a
partial reversal of the Krebs cycle (glutamine-dependent reductive
carboxylation) by which 2OG is reductively carboxylated by IDH to
generate isocitrate. This is in turn metabolised to citrate, which is
then cleaved to produce oxaloacetate and acetyl coenzyme A
(acetyl CoA).148–150 This acetyl CoA reservoir is necessary for fatty
acid synthesis and protein acetylation, whereas oxaloacetate is
converted to malate and can thus compensate, in part, for blocks
within the Krebs cycle. Recently, we conducted labelling
experiments with deuterium-labelled glutamine that indicated
the oxidative flux of the Krebs cycle in FH1KO MEFs. At variance
with the results obtained with UOK262 cells, our data suggest that
in FH1KO MEFs, 2OG can be converted to isocitrate by reversal of
the IDH catalysed reaction, but isocitrate cannot be further
metabolised to citrate, possibly due to impaired aconitase activity
as a result of succination.26 This suggests that succination of ACO2
may prevent FH1KO MEFs from utilising the reductive
carboxylation pathway for citrate synthesis.26 Clearly, much
more metabolomic analyses of various cell lines and tumours
need to be conducted before we have a clear picture of
dysregulated metabolism associated with FH deficiency.

EXPERIMENTAL MODELS FOR LOSS OF FH LEADING TO HLRCC
None of these studies would have been possible without the
development of a variety of models, particularly the conditional
mouse model of FH-associated disease in which inactivation of FH1
in kidney tubules causes the formation of hyperplastic cysts similar
to the human disease; but not cancer.17 This has facilitated in vivo
and in vitro studies, the latter using a panel of MEFs121 and renal
cells derived from it.145 Our own studies have always integrated
analyses of murine models with human tumours and UOK262 cells
(two human FH-deficient cell lines exist from HLRCC patients:
UOK262 derived from a metastasis and UOK268, the first
established renal cell line18,21). Although many similarities exist
between FH1-deficient human and murine cells, there are also a
number of clear differences. Both display increased lactate
production and stabilisation of HIF1a.18,21,114,121 The growth rate is
reduced/relatively slow in all cell lines lacking FH compared with
controls. UOK262 cells use reductive carboxylation, whereas this is
not the case for the FH1-deficient renal cells145 or MEFs.26 We
propose that the murine and human cell lines might be models for
different stages in the HLRCC disease process. Hence, the FH1
mouse model is particularly valid and informative for the early
stages of FH loss and initiation of oncogenesis that lead as far as
cyst formation in vivo, although we have successfully extrapolated
findings from the murine models to identify pathways in FH-
deficient human tumours, such as succination134 and activation of
the NRF2 antioxidant pathway.27,138 UOK262 cells perhaps better
reflect the later stages of renal neoplasia and metastasis, possibly
having acquired additional mutations subsequent to loss of FH
activity. There is a need to generate more and better human cell
lines to extend research, particularly for epigenetic analyses, ideally
with normal versus FH-deficient cells either from patients or for
example, by the use of transcription activator-like effector nucleases.

FUTURE RESEARCH: SYNTHETIC LETHALITY SCREENS
Targeting metabolism offers a realistic promise for controlling
renal cancer and the deployment of synthetic lethality screens are
one tool with which to identify and interrogate metabolic
pathways that are critical for both the survival and neoplastic
potential of FH-deficient cells.151 There are multiple strategies for
such screens including the use of short interfering RNA and/or
small-molecule libraries to identify compounds or pathways that
induce lethality in FH-deficient, but not wild-type cells. Clearly, a
variety of cellular models could be used–murine (MEFs and renal
cell lines) versus human cell lines; the key is to exploit the fact that
FH-deficient cells exhibit dysregulated metabolism and rely on
alternative metabolic pathways to cells with functioning FH.

FUTURE RESEARCH: FORWARD SCREEN USING ‘SLEEPING
BEAUTY’ TRANSPOSON-MEDIATED MUTAGENESIS
The failure of the FH1KO mouse model to recapitulate fully a renal
cancer phenotype implies a requirement for secondary somatic
hits.17,152,153 The identification of somatic mutations in renal
cancer by genome-wide sequencing and the distinction between
initiating and non-functional mutations will be expensive in both
time and money.68,69,154 Forward genetic screens in mice such as
the Sleeping Beauty transposon-mediated mutagenesis155,156 offer
a complement to analyses of human tumours and an alternative
and unbiased strategy to identify driver from passenger mutations
in genes and pathways that promote renal carcinogenesis and
progression in FH deficiency.

CONCLUSIONS
We have discussed the consequences of mutations in a triad of
metabolic genes FH, SDH and IDH and highlighted some common
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elements in the capacity of affected cells to adapt when
‘metabolically stressed/ challenged’ that go beyond the ‘Warburg
effect’. Fumarate, succinate, 2OG and (R)-2HG have similar
chemical structures fitting well with the observation that
they can competitively inhibit 2OG-dependent dioxygenases.
A number of these enzymes are inhibited including PHDs leading
to stabilisation of HIF and activation of HIF-dependent oncogenic
pathways, KDMs, and the TET family of 5mC hydroxylases leading
to global epigenetic changes. Thus, altered metabolism seems to
be capable of altering transcription mediated by small molecules
that can be considered ‘oncometabolites’ and represents an
important candidate in oncogenesis and consideration for future
studies. We propose that succination as a consequence of
elevated fumarate is a significant mechanism in oncogenesis
associated with loss of FH and may provide a link with increased
cancer risks. Although there is neither a time frame nor a clear
idea of all the steps in the oncogenic process associated with
mutations in these genes, we do know more about some of the
players and pathways that are activated and are building a
complex, but exciting perspective on these protagonists. Altered
metabolic states in disease offer additional opportunities for
diagnosis via imaging4,157,158 and measurement of altered levels
of metabolites.14–16 Our ongoing studies of the consequences of
FH deficiency have highlighted multiple candidate pathways that
are not mutually exclusive and come from an integrated and
unbiased research approach encompassing in vivo murine models,
cellular models and analyses of human tumour material. We
suggest that the study of rare diseases such as HLRCC has already
given new and exciting insights into links between dysregulated
metabolism and cancer and represents a real paradigm for cancer
research with the promise of potential novel therapeutic strategies
for patients.
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