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ARTICLE INFO ABSTRACT

Keywords: Cancer is now considered a multifactorial disorder with different aetiologies and outcomes. Yet, all cancers share
FH some common molecular features. Among these, the reprogramming of cellular metabolism has emerged as a key

Mitochondria player in tumour initiation and progression. The finding that metabolic enzymes such as fumarate hydratase
Fumarate (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), when mutated, cause cancer sug-
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Metabolism gested that metabolic dysregulation is not only a consequence of oncogenic transformation but that it can act as

cancer driver. However, the mechanisms underpinning the link between metabolic dysregulation and cancer
remain only partially understood. In this review we discuss the role of FH loss in tumorigenesis, focusing on the
role of fumarate as a key activator of a variety of oncogenic cascades. We also discuss how these alterations are
integrated and converge towards common biological processes. This review highlights the complexity of the
signals elicited by FH loss, describes that fumarate can act as a bona fide oncogenic event, and provides a
compelling hypothesis of the stepwise neoplastic progression after FH loss.

1. Introduction

Oncogenesis is a multistep process during which cells acquire mo-
lecular features known as “Hallmarks of Cancer”, which pave the way
to malignant transformation [1]. The reprogramming of cellular me-
tabolism is now widely considered a pivotal hallmark of cancer that
allows cancer cells to survive, proliferate, and metastasize [2]. Al-
though added to the list of the hallmarks only recently [2], the first
piece of evidence that cellular metabolism is reprogrammed in cancer

was provided already in 1887 by Ernst Freund, a Viennese physician,
who observed high sugar levels in the blood of cancer patients [3].
Based on this observation he proposed that reducing the amount of
sugar could impact the tumour growth [3]. In 1911 the German sci-
entist Wassermann postulated that accelerated proliferation of cancer
cells was associated with an increased oxygen consumption [4]. To
validate this hypothesis, he tried, without success though, to target
tumours using inhibitors of respiration such as selenium derivates [4].
Just two years later, in 1913, Eleanor Van Ness Van Alstyne and
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colleagues showed that increased carbohydrate intake resulted in ac-
celerated rat sarcoma growth [5], which was further confirmed by
William Woglom in 1915 [6]. These works supported the notion that
tumours use nutrients such as glucose and oxygen in a different way
than normal tissue. A few years later, these findings were systematically
investigated by Otto Warburg. He demonstrated that cancer cells fer-
ment most of their glucose to lactate even in the presence of normal
levels of oxygen when glucose should be fully oxidised to carbon di-
oxide through cellular respiration [7]. After the discovery that re-
spiration is carried out by the mitochondria, Warburg concluded that
all cancers must originate from a mitochondrial dysfunction [8].

After Warburg’s discoveries, the field of cancer metabolism was
neglected until the beginning of the 21% century, when major dis-
coveries and technical advances, including the advent of metabolomics,
rekindled the field. Furthermore, thanks to the availability of large
collections of gene expression data from cancer patients, the metabolic
landscape of cancer could be extensively assessed using gene expression
of metabolic enzymes. These bioinformatics analyses showed that both
nuclear and mitochondrial DNA-encoded mitochondrial genes are
suppressed in cancer [9-11] and this feature is associated with poor
clinical outcome and metastasis [9]. Noteworthy, not all tumours ex-
hibit mitochondrial impairment and it should be highlighted that the
complete loss of mitochondrial function can be detrimental for cancer
cells [12,13]. The role of mitochondrial dysfunction in cancer was
further corroborated by recent sequencing efforts that led to the dis-
covery that mitochondrial genes, including fumarate hydratase (FH),
succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH),
when mutated, cause hereditary and sporadic forms of cancer (re-
viewed in [14]). Although these discoveries were made almost twenty
years ago, the mechanisms underpinning transformation in these me-
tabolically impaired tumours are still under intense investigation and
could provide unique mechanistic insights into the link between dys-
regulated mitochondrial function and transformation. In this review,
we will focus on the role of FH loss in cancerous transformation.

2. Fumarate Hydratase mutations in human diseases

In the human genome the gene encoding FH is located in the
chromosome locus 1p43 and encompasses 22229 bases transcribing for
10 exons (NCBI database, NG_012338.1) that give rise to the FH
monomer, which exhibits a “tridomain” structure, with a central do-
main involved in the interactions with the other monomers, an N-
terminal Lyase 1 domain, and a C-terminal Fumarase C domain
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Interestingly, the FH gene encodes for both the cytosolic and the mi-
tochondrial variant, which differ in the peptide sequence at the N-ter-
minus [15]. Despite the existence of a mitochondrial and a cytosolic
isoform of FH, known as echoforms [16], how these two variants are
generated is a matter of debate. Whilst it was initially proposed that
these two isoforms are generated by differential mRNA processing [17],
more recent data suggest that they result from an alternative initiation
of the transcription [18]. The homotetrameric mitochondrial FH pro-
tein is part of the tricarboxylic acid (TCA) cycle, where it catalyses the
reversible hydration of fumarate to malate [19] (Fig. 1B).

Mutations of FH have been described in the literature and have been
implicated in the pathogenesis of various diseases. For instance, the
homozygous germline loss of FH is the cause of an autosomal recessive
metabolic disease called fumaric aciduria (OMIM #606812), which was
first reported in 1983 by Whelan and colleagues [20]. Patients with
fumaric aciduria display a biallelic loss of FH due to missense and
frameshift mutations or partial deletions, which results mainly in brain
abnormalities, developmental delay, and accumulation of fumarate in
the urine [21]. Patients affected by fumaric aciduria rarely survive the
childhood. Unfortunately, apart from dietary interventions with unclear
efficacy, there are no therapies available for this disease [22].

Heterozygous germline mutations of FH predispose to Hereditary
Leiomyomatosis and Renal Cell Cancer (HLRCC), a cancer syndrome
characterised by cutaneous, uterine leiomyomas, and renal cancer [23].
HLRCC patients harbour one mutant FH allele and the loss of the wild
type allele by loss of heterozygosity leads to benign tumours of the skin
and uterus, and papillary type II renal cell carcinomas (RCC), one of the
most aggressive forms of renal cancer characterised by early metastasis
and a poor clinical outcome [24]. So far, no correlation between the site
of mutations and clinical outcome in patients has been established,
indicating that the loss of FH activity, rather than any neomorphic
functions of the mutant protein, is responsible for cellular transforma-
tion [25]. Interestingly, the sporadic loss of FH has been reported in
other tumour types such as pheochromocytomas, paragangliomas
[26,27], adrenocortical carcinoma [28], neuroblastomas [28,29],
glioma, ependymoma, osteosarcoma, and Ewing’s sarcoma [28]
(Fig. 1C). Consistent with a broader role of FH in tumorigenesis, its
transcriptional downregulation was found in sporadic clear cell carci-
nomas [30] and in colorectal cancer [31], and additional evidence
suggests the involvement of FH mutations in breast, bladder, and tes-
ticular cancers [32]. These findings hint at a key role of FH loss in
human cancers. Yet, how its loss promotes tumorigenesis is still de-
bated. The molecular alterations caused by FH loss that are implicated
in tumorigenesis will be discussed in the next paragraphs.

(Ensembl database, FH-001 ENST00000366560.3) (Fig. 1A).
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Fig. 2. Metabolic rewiring in FH-deficient
cells. The biallelic loss of FH leads to the
truncation of the TCA cycle and the subsequent
accumulation of fumarate (highlighted in or-
ange). The combined disruption of the TCA
cycle and the inhibition of Succinate
Dehydrogenase (also known as Complex II of
the respiratory chain) by fumarate significantly
reduce mitochondrial respiration. To compen-
sate for the loss of mitochondrial function, FH-
deficient cells engage in a complex biochem-
ical rewiring. First, FH-deficient cells shift to-
wards aerobic glycolysis reducing the oxida-
tion of glucose in the mitochondria (lilac
arrows). Part of carbons from glucose is di-
verted toward the pentose phosphate pathway
(PPP) to maintain redox homeostasis (lilac ar-
rows). Furthermore, to maintain the remaining
TCA cycle activity and sufficient NADH gen-
eration, FH-deficient cells increase glutamine
oxidation (red arrows). Glutamine-derived
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AMP = adenosine monophosphate; CI-V = Electron transport chain Complex I-V; PDH: pyruvate dehydrogenase; GLUT1 = glucose transporter 1; HMOX1 = haem

oxygenase 1; IMP = inosine monophosphate.

3. FH loss induces a multi-layer cellular reprogramming that leads
to transformation

3.1. Metabolic rewiring in FH-deficient cells

The TCA cycle is a set of metabolic reactions within the mitochon-
dria that represents the final converging route for the oxidation of li-
pids, carbohydrates, and amino acids [33]. Consequently, TCA cycle
enzymes are essential for cell growth and survival, and it came as a
surprise that FH loss could not only be tolerated by cells but that it
could also cause cancer. Therefore, it was argued that FH-deficient cells
must respond to this mitochondrial impairment by compensatory me-
tabolic changes. We and others have extensively investigated these
metabolic changes, which are summarised in Fig. 2. First, as often ob-
served in mitochondrial diseases, FH-deficient cells increase their gly-
colytic rates and instead of oxidising glucose in the mitochondria they
shunt it into lactate production [34] and other glycolytic branches,
including the pentose phosphate pathway (PPP) [35]. Interestingly, as
will be detailed in Section 3.2.2, this glycolytic shift is supported by a
transcriptional reprogramming of glycolytic enzymes and the inhibition
of pyruvate dehydrogenase (PDH), which in turn blocks the entry of
glucose into the mitochondria [36] (Figs. 2, 4). To fuel this truncated
TCA cycle when glucose entry in the mitochondria is reduced, glucose is
replaced by glutamine as the main source of carbons [34] (Fig. 2).
Glutamine fuels part of the TCA cycle supplying the a-ketoglutarate
(aKG) necessary to generate, through aKG dehydrogenase, a pool of

NADH used by oxidative phosphorylation (OXPHOS) for ATP genera-
tion and for the maintenance of mitochondrial membrane potential
[34]. The latter is necessary for a variety of mitochondrial processes
that need to be preserved for cell survival, including protein translo-
cation, ion exchange and metabolite transport, and it also regulates
mitochondrial quality control, cell death, and mitochondrial retrograde
signalling [37]. To maintain this linear set of reactions without
reaching saturation due to FH loss, some glutamine-derived carbons are
diverted towards the haem biosynthesis and degradation pathway,
which is essential for the survival of FH-deficient cells [34] (Fig. 2).
Moreover, in human FH-mutant cells UOK262 glutamine is converted to
aKG and eventually to citrate for lipid biosynthesis via the reversal of
IDH and aconitase (ACO) in a process called reductive carboxylation
[38] (Fig. 2). Of note, this process uses both cytosolic and mitochon-
drial NADP *-dependent IDH isoforms (IDH1 and 2, respectively) and
provides key TCA cycle intermediates normally generated from glucose,
such as citrate and isocitrate, and also acetyl-CoA for lipid biosynthesis
[38,39] (Fig. 2). The presence of reductive carboxylation in FH-defi-
cient cells is controversial since it was observed in human FH-deficient
cells, but not in mouse Fh1-deficient epithelial cells [34] or fibroblasts
[40]. This apparent inconsistency between the mouse and human
models could be explained by the fact that the human FH-deficient cells
accumulate lower levels of fumarate than the mouse counterparts [41].
As a key component of the set of reactions of reductive carboxylation,
the mitochondrial ACO (ACO2), is inactivated by fumarate [40] (more
details in Section 3.2.1). It is possible that the lower fumarate levels
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observed in UOK262 could spare ACO2 from fumarate-driven in-
activation, preserving the ability to perform reductive carboxylation in
these cells. Given that reductive carboxylation offers important bioe-
nergetics and biosynthetic advantages for tumour growth in cells with
defective mitochondria [38], it is also possible that FH-deficient clones
harbouring lower levels of fumarate and preserved ACO2 function are
selected during tumour progression.

Fumarate accumulates to millimolar levels in FH-deficient cells [41]
and it is the most striking biochemical feature associated with FH loss
[34,41]. At this concentration, fumarate could permeate multiple sub-
cellular compartments including mitochondria, cytosol, and nuclei
[42-44] as well as the extracellular microenvironment [36]. High fu-
marate levels could alter the balance of multiple enzymatic reactions in
which this metabolite is directly involved as either substrate or product.
For instance, it was shown that fumarate accumulation impacts the
conversion of succinate to fumarate by SDH in the TCA cycle, reducing
SDH-dependent mitochondrial respiration [45] (Fig. 2). Other examples
of pathways dysregulated by fumarate accumulation are the urea cycle
[43] and the purine nucleotide cycle (PNC) [46] (Fig. 2). Within the
urea cycle, argininosuccinate produced from citrulline and aspartate is
normally converted to arginine and fumarate by the enzyme arginino-
succinate lyase (ASL) [41]. The accumulation of fumarate can reverse
this reaction, driving the synthesis of argininosuccinate from exogenous
arginine and fumarate [41] (Fig. 2). In turn, FH-deficient cells require
arginine to buffer fumarate and its depletion is lethal for FH-deficient
cells [41,43]. Another metabolic pathway predicted to be affected by
fumarate accumulation is the PNC, whereby the increase in fumarate
may cause the reversal of adenylosuccinate lyase (ADSL) to form ade-
nylosuccinate (Fig. 2). However, besides the observation of an accu-
mulation of adenylosuccinate in mouse Fh1-deficient cells [47], there is
no formal experimental evidence that ADSL reversal occurs in FH-de-
ficient cells. Overall, these results show that the loss of FH leads to
profound metabolic changes that are required to compensate for the
truncation of the TCA cycle and for the aberrant accumulation of fu-
marate. Failure to activate these metabolic scape valves has been shown
to be detrimental for FH deficient cells [48], arguing that these changes
are a first essential step for tumorigenesis.

3.2. Pro-oncogenic signalling activated by FH loss

3.2.1. Oncogenic signalling via fumarate-dependent succination

Besides the above-described metabolic reprogramming (Section
3.1), whose contribution to the transformation process is still unclear,
FH loss and fumarate accumulation elicit a plethora of pro-oncogenic
signals that can directly contribute to transformation. The first type of
oncogenic signalling activated by fumarate is related to its chemical
structure. Fumarate is a mild electrophilic molecule due to the low
electron density in its double bond caused by the conjugation to two
carboxylic acid residues [49] (Insert in Fig. 3). At acidic pH conditions
typical of cancer cells [50], fumarate can react with nucleophilic re-
sidues such as thiol groups from cysteine residues exposed at the sur-
face of proteins, generating a stable thioether known as S-(2-succino)
cysteine (2SC) [51]. This post-translational modification, called succi-
nation [52], is not only irreversible and resistant to acidic hydrolysis,
but it manifests only at pathological levels of fumarate, making it an
excellent diagnostic marker of FH-deficiency in cancer patients [53]. So
far, various proteins have been identified as targets of succination in-
cluding the Kelch-like ECH-associated proteinl (KEAP1) [54,55], iron
regulatory protein 2 (IRP2) [56], the iron-sulfur-cluster (Fe-S cluster)
biogenesis family of proteins [45], aconitase (ACO2) [40], glutathione
(GSH) [57,58] and SWI/SNF Related, Matrix Associated, Actin Depen-
dent Regulator Of Chromatin Subfamily C Member 1 (SMARCC1) [50]
(Fig. 3).We will briefly describe them within this section below.

The succination of KEAP1 was one of the first post-translational
modifications triggered by fumarate to be identified [54,55]. Under
physiological conditions, KEAP1, a E3 ubiquitin ligase, binds Nuclear
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Factor, Erythroid 2 Like 2 (NRF2) protein, priming it for proteasomal
degradation [59]. NRF2 is a transcription factor that belongs to the
family of basic leucine zippers (bZIP) activated in response to oxidative
stress [59]. In FH-deficient cells, the succination and subsequent in-
activation of KEAP1 prevents the degradation of NRF2, which in turn is
allowed to translocate in the nucleus, mounting a potent antioxidant
response mediated by genes such as haem oxygenase 1 (HMOX), NAD
(P)H dehydrogenase quinone 1 (NQO1), and glutamate-cysteine ligase
catalytic subunit (GCLC) [55,60]. The role of NRF2 in tumorigenesis is
debated and context-dependent. On one hand, NRF2 activation can
prevent cellular transformation triggered by specific carcinogens such
as benzo[a]pyrene and aflatoxin B1 by facilitating their detoxification
[61]. On the other hand, the antioxidant response activated by NRF2
elicited by oncogenes such as Kras, Braf and Myc can prevent the da-
mages caused by oxidative stress, and therefore favour tumour survival
[62]. The contribution of NRF2 to cellular transformation in FH-defi-
cient cells is still unclear but we will discuss its potential role later in
Section 4.

Another target of succination is the iron regulatory protein 2 (IRP2)
[56] (Fig. 3), a protein that normally suppresses the translation of
ferritin, a key player in iron homeostasis [63]. When inactivated by
succination, IRP2 allows the expression of ferritin, leading to the de-
pletion of freely available iron [56] with important consequences for
the Fe-S cluster formation. The depletion of Fe-S clusters may indirectly
induce a mitochondrial dysfunction through the impairment of RC and
other mitochondrial proteins, potentially favouring transformation.
Moreover, the upregulation of ferritin was also shown to activate
forkhead box protein M1 (FOXM1), promoting cell growth [56].

Fe-S cluster assembly family of proteins is another target of succi-
nation (Fig. 3). These proteins include Fe-S cluster scaffold (NFU1), Fe-S
cluster assembly enzyme (ISCU) 1 and 2, and BolA family member
(BOLA) 1 and 3 [45]. This family of proteins is required for the correct
synthesis and integration of Fe-S cluster in various proteins, including
electron transport chain Complexes I, II, III, and ACO2 [45]. Through
the impairment of the assembly of Fe-S clusters, fumarate indirectly
reduces the activity of the RC Complex I, which together with the
above-described inhibition of complex II (Section 3.1), reduces the
overall activity of the RC [45].

ACO2 was also found to be succinated by fumarate on three dif-
ferent cysteine residues (C385, C448, and C451) in Fhi ~/~ MEFs [40].
As a consequence of succination, ACO2 activity is impaired and this
inactivation may prevent Fhl-deficient MEFs to use glutamine for ci-
trate formation through reductive carboxylation [40].

Succination can also target the tripeptide glutathione (GSH)
[57,64]. By depleting this important antioxidant molecule, FH-deficient
cells experience increased oxidative stress, which is balanced by an
increase in GSH biosynthesis [57].

Finally, very recent work showed that SMARCC1, a member of the
SWI-SNF tumour-suppressor complex, is succinated by fumarate on
cysteine residue 520 [65]. Of note, this complex functions as an ATP-
dependent chromatin remodelling factor and regulates the structure of
the nucleosome [65]. Intriguingly, the cysteine sensitive to fumarate is
contained within the SWIRM domain of the protein, usually mutated in
other cancer types and also responsible for interaction with other
downstream proteins such as SWI/SNF Related, Matrix Associated,
Actin Dependent Regulator Of Chromatin, Subfamily B, Member 5
(SNF5) [50]. As a consequence of succination, the interaction between
SMARCC1 and SNF5 is weakened and HLRCC cells shows a similar
transcriptional profile compared to SNF5-deficient cells [50].

Together, these pieces of evidence show that upon FH loss the ac-
cumulation of fumarate can trigger a broad range of signalling cascades
via succination, and the role of these cascades in tumorigenesis of
HLRCC is only now beginning to be understood.

3.2.2. Oncogenic signalling mediated by fumarate via aKGDDs inhibition
Another target of fumarate accumulation is the superfamily of aKG-
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Succination of KEAP1 causes the stabilisation and activation of the NRF2-mediated anti-oxidant response. One of the targets of NRF2 is Haem Oxygenase 1 (HMOX1),
which is required for the haem biosynthesis and degradation, an essential pathway for the survival of FH-deficient cells. Succination of Iron Responsive Element
Binding Protein 2 (IRP2) inhibits the repressive function of this protein on the translation of ferritin. The subsequent increase in ferritin causes a drop in free
intracellular iron. In parallel, ferritin promotes the expression of Forkhead box protein M1 (FOXM1), a pro-mitotic protein that supports cell growth. Succination of
the Fe-S cluster proteins Nful, Bola and Iscu impairs the Fe-S clusters assembly required by the electron transport chain complex I, contributing to defects in
mitochondrial respiration. The reduction of iron and the succination of key cysteine residues in its catalytic core also inactivates the TCA cycle enzyme Aconitase 2
(ACO2). In the nucleus, the succination of SWI/SNF complex protein SMARCCI inactivates this complex, affecting gene expression and chromatin remodelling.
Finally, GSH succination causes the depletion of glutathione (GSH) stores, increasing oxidative stress and triggering senescence in primary FH-deficient cells. CI-
V = Electron transport chain Complex I-V; KEAP1 = Kelch-Like ECH-Associated Protein 1; Bolal-3=BolA Family Member 1-3; ISCU = Iron-Sulfur Cluster Assembly
Enzyme; NFU1 = NFU1 Iron-Sulfur Cluster Scaffold; NRF2 = Nuclear Factor, Erythroid 2 Like 2; SMARCC1 = SWI/SNF Related, Matrix Associated, Actin Dependent

Regulator Of Chromatin Subfamily C Member 1. GCLC = glutamate-cysteine ligase; NQO1 = NAD(P)H dehydrogenase quinone 1.

dependent-dioxygenases (aKGDDs), proteins involved in multiple bio-
logical processes, including protein hydroxylation, DNA and histone
demethylation, and RNA modifications (Fig. 4). These enzymes use aKG
and oxygen as substrates, iron and vitamin C as cofactors, and produce
succinate and carbon dioxide [66]. Fumarate acts as a competitive in-
hibitor of these enzymes, with important biological consequences,
which will be described in this section below.

The human genome encodes for three aKGDDs prolyl-hydroxylases
(PHD1-3), all of which use molecular oxygen to generate a hydroxyl
group on proline residues of proteins [67]. Under normoxic conditions,
PHDs hydroxylate the subunit a of hypoxia-inducible factors (HIFs) on
two proline (Pro) residues, Pro 402 and Pro 564 [67], leading to their
proteasomal degradation [68,69]. In the early 2000s, it was shown that
the competitive inhibition of PHDs by fumarate can lead to the stabi-
lisation of HIF1-a/HIF2-a [70] even at normal oxygen levels, a phe-
nomenon known as pseudohypoxia [32]. FH-deficient cells display the
activation of typical HIF targets that are involved in angiogenesis,
growth, and metabolism [71,72] (Fig. 4). Among the target genes of
HIFs there are several metabolic enzymes including the glucose trans-
porter 1 (GLUT1) [70], which increases glucose uptake, pyruvate de-
hydrogenase kinases (PDKs) [73,74], which inhibits pyruvate dehy-
drogenase (PDH), and lactate dehydrogenase A (LDH-A) [75]. Together,
these genes switch off mitochondrial oxidative metabolism and redirect
glycolytic pyruvate towards lactate production, as described in Section

3.1 and in Fig. 2. Furthermore, HIFs activate vascular endothelial
growth factor (VEGF), which has important implication for tumour
invasiveness and crossactivation of other oncogenic signalling mediated
by platelet-derived growth factor (PDGF) [70,76,77]. Despite these
lines of evidence pointing at an important role of HIFs in HLRCC
biology, the role of these transcription factors in tumorigenesis is still
debated. For instance, it was shown that the genetic deletion of both
Hifland Hif2 does not prevent the formation of premalignant lesions in
Fhl-deficient animals, suggesting that at least in this model, HIF pro-
teins are dispensable for tumorigenesis [54].

Within the nucleus of a cell, chromatin structure and function are
finely regulated by chemical changes of DNA and histones catalysed by
aKGDD DNA and histone demethylases. DNA demethylation is cata-
lysed by a family of proteins known as Ten-Eleven Translocation (TETs)
proteins [78], whilst histone demethylation is carried out by Lysine
demethylases (KDMs) [79]. By altering the activity of these enzymes,
fumarate can affect chromatin organisation, eventually perturbing gene
expression.

TETs are a family of three proteins that catalyse the demethylation
of cytosine residues on DNA [78], a process linked with the activation
of gene expression [80]. Therefore, by blocking TET-dependent DNA
demethylation, fumarate could suppress the expression of several
genes. For instance, FH loss is associated with the hypermethylation
and suppression of the tumour suppressor cyclin-dependent kinase
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Fig. 4. Oncogenic signalling mediated via
aKGDDs inhibition in FH-deficient cells. Upon
FH loss, fumarate accumulation inhibits the
activity of various aKGDDs (grey hexagons).
Glucose For instance, fumarate inhibits prolyl hydro-

1 xylases (PHDs), causing the stabilisation of the
alpha subunit of a family of hypoxia-inducible
factors (HIFs) even in the presence of normal
oxygen levels. The transcriptional response
elicited by HIFs promotes angiogenesis, tumour
growth, aerobic glycolysis via increased ex-
pression of the glucose transporter GLUT1, and
lactate dehydrogenase (LDH-A). Furthermore,
HIF triggers the expression of pyruvate dehy-
drogenase kinase 1 (PDK1), which phosphor-
ylates and inhibits pyruvate dehydrogenase
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rived pyruvate in the mitochondria. In the nu-
cleus, fumarate accumulation induces a pro-
found epigenetic reprogramming due to the
inhibition of both DNA and histone demethy-
lases (TETs and KDMs respectively). In parti-
cular, the inhibition of the demethylation of
miR200 was shown to trigger an epithelial-to-
mesenchymal transition (EMT) in FH-deficient
cells. Finally, the inhibition of the RNA de-
methylase FTO by fumarate accumulation is
predicted to increase RNA methylation.
A = adenosine; FTO = Fat Mass and Obesity-

a-Ketoglutarate
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inducible factor ; KDMs = lysine Demethylases; miR200-C = unmethylated microRNA 200 gene; miR200-mC = methylated microRNA 200 gene; m6A = N6-methyl-
adenosine; PDGF = Platelet Derived Growth Factor; TETs = Ten-Eleven Translocation proteins; VEGF = Vascular Endothelial Growth Factor.

inhibitor 2A (CDKN2A) [81,82] (Fig. 4), which encodes for pl16, an
inducer of senescence [83]. Fumarate can also cause the hypermethy-
lation and suppression of a family of antimetastatic miRNAs, MIR200
[84], known inhibitors of the transcription factors Zinc Finger E-Box
Binding Homeobox 1/2 (ZEB1 and ZEB2) and Snail homolog 2 (SNAI2),
leading to an epithelial-to-mesenchymal transition (EMT), a process
known to promote metastatic dissemination [85,86]. Interestingly, the
link between the induction of EMT and FH loss was further strength-
ened by the finding that the chromatin remodelling factor lymphoid-
specific helicase (LSH) triggers an EMT by suppressing FH in naso-
pharyngeal carcinoma [87].

Another important family of aKGDDs involved in epigenetic repro-
gramming is the Jumonji-containing histone lysine demethylases
(JmjC-KDMs) [88] (Fig. 4). These enzymes remove the methyl group
from lysine residues of histones, which are known to regulate chro-
matin accessibility and gene expression [79,88]. Only recently it has
been shown that fumarate accumulation, through inhibition of JmjC-
KDMs, increases the global levels of methylation of lysine 4, 27, and 79
of histone 3 (H3K4, H3K27, and H3K79, respectively) [89]. These
histone marks are associated to activation and repression of gene
transcription, respectively. However, the biological consequences of a
fumarate-dependent inhibition of histone demethylations are still un-
clear.

A less characterised aKGDD target of fumarate is the fat mass and
obesityassociated (FTO) [90] (Fig. 4). FTO was originally described as a
protein that catalyses the demethylation of 3-methylthymine (3mT) in
single-stranded DNA of mice [90]. However, only few years ago it was
clarified that its main activity is the demethylation of N6-methylade-
nosine of RNA [91,92]. Even though it was shown that in vitro FTO is
sensitive to fumarate levels as the other aKDDG [90], the role of FTO
inhibition within FH-dependent tumorigenesis is still largely un-
explored and there is no evidence that FTO is inhibited in FH-deficient
tumours.

3.3. Other molecular cascades affected by FH loss

Beyond the inhibition of aKGDDs and the targeting of proteins via
succination, other molecular pathways that are potentially involved in
the tumorigenic process are differentially modulated in FH-deficient
cells. For instance, it has been shown that FH loss alters the activation
of the AMP-activated protein kinase (AMPK) [93], the mammalian
target of rapamycin (mTOR) [93] and Abelson murine leukaemia viral
oncogene homolog 1 (ABL-1) [94,95]. Furthermore, FH-deficient cells
exhibit alterations of the cyclic AMP (cAMP) [96] signalling and DNA-
damage response (DDR) pathway [97,98]. The role of these cascades in
FH-deficient cells will be briefly described in this section below (Fig. 5).

AMPK is a heterotrimeric kinase activated by alterations in the
energetic balance [99]. The protein complex consists of two catalytic
subunits (al and a2) and two regulatory subunits ( and v) [100].
AMPK activation is tightly controlled by both ADP:ATP and AMP:ATP
ratios, acting therefore as a sensor of the bioenergetic status of the cells
[101]. When cells experience energy stress and AMP levels rise, AMPK
blocks anabolic processes and activates catabolism, including fatty acid
oxidation and autophagy [102]. In HLRCC tumours, AMPK activity and
its phosphorylation are reduced compared to normal kidney tissue [93]
(Fig. 5). Even though it is still not clear which mechanisms lead to
suppression of AMPK in FH-deficient tumours, this cascades increases
the activity of acetyl CoA carboxylase (ACC), one of the main regulatory
enzymes of the de novo lipid biosynthesis [93], and causes the repres-
sion of divalent metal transporter 1 (DMT1), reducing freely available
iron [93]. More importantly, it was shown that AMPK inhibition may
cross-activate mTOR signalling in FH-deficient tumours [93]. Con-
sistently, S6 ribosomal protein Kinase (S6K), a downstream effector of
mTOR, is phosphorylated in FH-deficient cells and increases the global
protein biosynthesis [93]. Additionally, Linehan and co-workers
showed that also ABL-1 activation via the oxidation of the protein-
tyrosine phosphatase N12 (PTPN12) converge to mTOR signalling in
FH-deficient cells [94]. Intriguingly, the connection between FH and
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Fig. 5. Other molecular cascades affected by
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PTPN12 activate the kinase ABL-1, which in
turn activates mTOR and NRF2. The activation
of mTOR is key to increase general protein
synthesis via the phosphorylation of S6K. In
parallel, AMPK is suppressed in FH-deficient
cells, further activating mTOR and Acetyl CoA
carboxylase (ACC), thus promoting lipid bio-
synthesis. The inactivation of AMPK also leads
to the p53-dependent suppression of the iron
transporter DMT1, decreasing iron uptake and
reducing of the free iron pool. FH deficient cells
were shown to depend on the activity of a set of
Adenylate Cyclases (AC), which increase the
total pool of cyclic AMP (cAMP) in the cells.
Finally, the accumulation of fumarate increases
resistance to DNA damage by ionising radia-
tions (IR) and favours non-homologous end-
joining upon DNA damage, via inhibition of
KDMBS, a key histone demethylase implicated in
chromatin unfolding for DNA repair. ABL-
1 = Abelson murine leukaemia viral oncogene
homolog 1; DMT1 = Divalent metal transporter
1; H3K36-me2= dimethylation of histone H3
at lysine 36; H3K36-3me = trimethylation of
histone H3 at lysine 36; KDMs = lysine de-
methylases; mTOR = mechanistic target of ra-
pamycin; p53 = tumour suppressor protein 53;

mTOR appears bidirectional since the chronic activation of mTOR
complex]l (mTORC1) through the deletion of Tuberous Sclerosis com-
plex1/2 (Tscl/2) represses Fhl thus contributing to a fumarate-de-
pendent transformation in RCC mouse model [103].

Another important regulator of cell signalling is the cyclic nucleo-
tide cAMP [104] (Fig. 5). cAMP signalling is often increased in cancer
through different molecular strategies that depend on the tumour type
[104]. cAMP levels are tightly controlled by two different types of en-
zymes, adenylate cyclases, which are responsible for the generation of
cAMP from ATP, and phosphodiesterases, which convert cAMP back to
AMP [104]. Both enzymes respond to other signalling cascades in-
cluding calcium signalling, calmodulin, calcineurin, and receptor tyr-
osine kinases [104]. A synthetic lethal screening performed on FH-de-
ficient cells revealed that multiple adenylate cyclases are essential for
these cells [96]. The higher turnover of cAMP observed upon FH loss
suggests that other downstream targets of cAMP, such as cAMP-acti-
vated protein kinases (PKA) may play a role in FH-dependent tumor-
igenesis [96]; however, this aspect of FH biology is largely unexplored.

Another important biological process controlled by FH and fumarate
levels is DDR (Fig. 5). DDR is a complex and articulated process that
follows DNA damage [105]. Its role has been widely studied in cancer
research mainly in connection with genomic instability and radio-
therapy [105]. Few recent works shed light on a new function of FH and
fumarate accumulation in DDR. It was shown that upon DNA damage,
FH translocates in the nucleus at the sites of damage, where it produces
a local pool of fumarate that causes the inhibition of histone H3K36
demethylation, an important step in DDR, and the binding of pro-non
homologous end joining (pro-NEHJ) proteins [106]. Secondly, the ac-
cumulation of fumarate was shown to correlate with increased en-
dogenous DNA damage, inhibition of homologous recombination re-
pair, and increased sensitivity towards poly-ADP ribose polymerase

AMPK = AMP-activated protein kinase;
PTPN12 = Tyrosine-protein phosphatase non-
receptor type 12; S6K = S6 ribosomal protein
kinase.

inhibitors (PARP inhibitors) [107]. Finally, FH-deficient cells displayed
not only a marked resistance to DNA damage caused by ionising ra-
diation but also an early mitotic entry even in a condition of unrepaired
damage [97].

4. A possible paradigm of tumorigenesis in HLRCC

In the previous paragraphs of this review, we provided compelling
evidence that upon FH loss cells orchestrate a multifaceted repro-
gramming that includes pro-survival metabolic adaptations and the
activation of oncogenic cascades. However, the specific contribution of
these signalling cascades towards cellular transformation is not fully
understood. Based on our current understanding, we postulate that
tumorigenesis driven by FH loss occurs via a series of steps over time,
largely divided into a “metabolic adaptation” phase, and subsequent
activation of oncogenic signalling cascades mediated by fumarate
(Fig. 6). First, upon FH loss, cells must adapt to the profound dys-
function generated by the truncation of the TCA cycle, engaging in a
series of compensatory metabolic adaptations, including the switch
towards glycolysis, and activation of glutamine oxidation. Under these
conditions, fumarate starts to accumulate. In order to tolerate the po-
tentially toxic accumulation of fumarate, cells exploit a series of stra-
tegies to buffer this metabolite, including protein succination and the
reversal of biochemical pathways that normally produce fumarate. At
this stage, FH-deficient cells might experience profound oxidative stress
caused by the disruption of mitochondrial function and depletion of
GSH that lead to senescence. The fine-tuning of an antioxidant response
is likely important for the survival and growth of FH-deficient tumours
at this stage. It is tempting to speculate that the activation of anti-
oxidant programmes such as those triggered by NRF2 via succination of
KEAP1 are not just important to escape cell death triggered by excessive
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Fig. 6. Tumorigenesis in FH-deficient cancer.
We hypothesise that tumorigenesis in FH-defi-
cient cells is a multi-step process. First, upon
FH loss, cells undergo a series of biochemical
adaptations in order to compensate for the loss
of FH and for the truncation of the TCA cycle.
These compensatory changes support the ele-
vation of intracellular fumarate, which in turn
can lead to senescence due, at least in part, to
oxidative stress. In parallel, fumarate can in-
duce epigenetic changes, such as hypermethy-
lation of p16, that can enable the bypass of
senescence. The activation of additional onco-
genic cascades, including those orchestrated by
NRF2, ABL-1, and HIFs contribute to cellular
transformation.

Time

oxidative stress but could also contribute to avoiding senescence,
paving the way to transformation in FH-deficient cells. Yet, it should be
noted that the activation of NRF2 can be tumour suppressive by al-
lowing detoxification from excessive fumarate with increased GSH
biosynthesis [57] and activation of HMOX1 [34]. Additionally, the
epigenetic suppression of pl6 could be another important step to
overcome senescence in FH-deficient cells. In parallel, fumarate accu-
mulation causes the inhibition of multiple aKGDDs. Of note, PHDs/
TETs/KDMS inhibition appears to occur via the combination of fuma-
rate accumulation and the parallel decrease in freely available iron, a
key cofactor for these enzymes [108]. The inhibition of aKGDDs or-
chestrates a complex transcriptional and epigenetic rewiring in FH-
mutant tumours. Of note, the epigenetic silencing of p16 and activation
of EMT can both help to evade senescence and promote cell migration
and invasion. Whether these events are involved in the early phases of
transformation or if they emerge at a later stage of tumour progression
and are implicated in tumour metastasis is still an open question in the
field. Understanding this question will be key to elucidate which of the
pathways triggered by fumarate should be targeted to prevent tumour
formation and/or progression.
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