
The story of von Hippel–Lindau (VHL) dis-
ease and the VHL tumour suppressor gene 
(TSG) provides a paradigm that illustrates the 
relevance of studying rare inherited cancer 
syndromes to gain novel insights into the 
underlying biology of human cancers and to 
aid the development of therapies. Throughout 
most of the twentieth century, VHL disease 
was considered to be a rare curiosity that was 
of little general interest to clinicians and that 
had no known relevance to wider studies of 
cancer. However, the identification in 1993  
of inherited mutations in the VHL gene in 
families with VHL disease represented the 
first of a series of seminal findings that have 
led to the VHL TSG assuming a central place 
in our current understanding of the mecha-
nisms of cellular oxygen sensing and the 
pathobiology of clear-cell renal cell carcinoma 
(ccRCC). Here, we review the background 
and timelines of this narrative, and discuss  
the opportunities for novel therapeutic  
interventions in ccRCC and beyond (FIG. 1).

VHL disease
VHL disease is a hereditary, autosomal- 
dominant, neoplastic disease that is associated 

with various tumour types, including 
ccRCCs, central nervous system (CNS) and 
retinal haemangioblastomas, phaeochro-
mocytomas (PCCs) and pancreatic neuro-
endocrine tumours, in addition to pancreatic 
and renal cysts. Ocular manifestations of 
the syndrome were described by Treacher 
Collins in 1894 (REF. 1). The name VHL dis-
ease was coined in 1936 and originates from 
the initial description of retinal angiomatosis 
in 1904 by Eugen von Hippel2 and cerebellar 
and spinal haemangioblastomas in 1927 by 
Arvid Lindau3; the term has been in com-
mon use since the 1970s4. Clinical diagnostic 
criteria introduced in 1964 (REF. 5) enabled 
a diagnosis of VHL disease in patients who 
had two tumours (such as two haemangio-
blastomas or a haemangioblastoma and a vis-
ceral tumour) and no family history of VHL 
disease, and in patients who had only one 
tumour but family history of VHL disease. 
Phenotypic hetero geneity in VHL disease 
was first shown in 1991 (REFS 6,7). Clinically, 
VHL disease has been classified into type 1 
or type 2 depending on the absence or pres-
ence of PCCs, respectively8. Type 2 VHL 
disease is further subdivided into type 2A 

(with PCCs but without RCCs), type 2B (with 
PCCs and RCCs) and type 2C (with PCCs 
only)9 (TABLE 1). Although this classification 
facilitates genotype–phenotype studies (dis-
cussed below), it has limited clinical utility 
because families can move between subtypes: 
for example, from type 1 to type 2 or from 
type 2C to type 2B.

Identification of VHL
As early as 1990, a comparison of age– 
incidence curves for the sporadic,  
non-heritable forms of cerebellar 
haemangio blastoma and ccRCC with those 
for the familial forms of these tumours 
occurring in VHL disease indicated that 
the curves for tumours in VHL disease are 
compatible with a single, rate-limiting muta-
tion (‘one-hit’) model, whereas the curves 
for sporadic tumours are compatible with 
a ‘two-hit’ model. This finding implicated a 
recessive TSG (similar to the retinoblastoma 
TSG, RB1) in the pathogenesis of these 
disorders10, and the VHL gene, located on 
the short arm of chromosome 3 at cytoband 
3p25–26, was identified by positional clon-
ing in 1993 (REF. 11). Patients with VHL 
disease harbour a single mutant allele, and 
tumour development depends on the spon-
taneous inactivation or loss of the second, 
wild-type VHL allele. Early evidence that 
the VHL gene is a TSG came from studies 
of loss of heterozygosity (LOH) that showed 
that inactivation of both VHL alleles is a 
crucial event in the development of neo-
plasms in VHL disease12,13 and sporadic non-
hereditary ccRCC14. Almost two decades 
ago, studies of VHL-negative ccRCC cells 
provided biological evidence for a tumour 
suppressor role for the VHL gene product 
(pVHL). Reintroduction of wild-type, but 
not mutant, pVHL into a VHL-null ccRCC 
cell line had no demonstrable effect on cell 
growth in vitro but inhibited the ability to 
form tumours in nude mice15 and restored 
the ability to exit the cell cycle and enter  
quiescence in low serum16.

Characterization of VHL and pVHL
The VHL gene encodes two isoforms of 
pVHL; a 213-amino-acid, 30 kDa form 
(pVHL30) and a 160-amino-acid, 19 kDa 
form (pVHL19)

17–19. pVHL19 lacks a 
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53-amino-acid amino-terminal pentameric 
acid repeat domain and predominates in 
many tissues. Early functional studies sug-
gested that the two isoforms have equivalent 
effects in assays18, and that both isoforms 
have tumour suppressor activity in vivo19.

pVHL structure and the VCB complex. 
Biochemical studies in the mid-1990s 
revealed that pVHL forms a ternary com-
plex with the transcription elongation fac-
tors C and B (also known as elongin C and 
elongin B) termed the VCB complex20–22. 
This complex is crucial for pVHL func-
tion, and its structure was resolved in 1999 
(REF. 23). pVHL consists of two tightly cou-
pled domains, α and β (FIG. 2); the β-domain 
consists of two β-sheets arranged as a 
sandwich with an α-helix on top, whereas 
the α-domain, which directly contacts 
elongin C, consists of three α-helices. The 
VCB complex nucleates a complex contain-
ing cullin 2 (CUL2) and the RING finger 
protein RBX1 (forming the VCB–CR 
complex)24–26.

Together, elongin B and elongin C act as 
adaptors that link the substrate-recognition 
subunit of the VCB–CR complex (pVHL, 
which binds to substrates through its 
β-domain) to heterodimers of CUL2 and 
RBX1. pVHL is stabilized by associat-
ing with elongins B and C and, in turn, 
elongins B and C are stabilized through 
their interactions with each other and with 
pVHL27. The entire VCB complex is thus 
resistant to proteasomal degradation. By 
contrast, pVHLs harbouring mutations that 
disrupt elongin binding are unstable and 

rapidly degraded by the proteasome20–22,24. 
Recently, mutations in TCEB1 (which 
encodes elongin C) affecting the domains 
in elongin C that bind to pVHL have been 
described in ccRCC28, supporting the 
hypothesis that the tumorigenic effects of 
VHL mutations relate to dysfunction of the 
VCB complex as a whole rather than  
dysfunction of pVHL alone.

In 1998–1999 it was noted that, structur-
ally, the VCB–CR complex resembles yeast 
Skp1–Cdc53–F-box protein (SCF) ubiquitin 
ligases23,24. Subsequent work showed that, 
functionally, both the VCB–CR complex and 
the SCF complex have ubiquitin ligase activ-
ity and are capable of targeting proteins for 
proteasomal degradation29–33.

pVHL and HIFs. In the mid-1990s it was 
noted that the highly vascular tumours 
associated with VHL disease overproduce 
angiogenic polypeptides such as vascular 
endothelial growth factor (VEGF)34–36. 
The first biochemical evidence that 
pVHL might have a critical role in the 
transduction of signals generated by 
changes in ambient oxygen tension came 
in 1996; ccRCC cells lacking wild-type 
pVHL were noted to produce mRNAs 
encoding VEGF, glucose transporter 1 
(GLUT1; also known as SLC2A1) and 
platelet-derived growth factor subunit 
B (PDGFB) under both normoxic and 
hypoxic conditions37,38. Reintroduction of 
wild-type but not mutant pVHL into these 
cells specifically inhibited production of 
these mRNAs under normoxic conditions, 
thus restoring their previously described 

hypoxia-inducible profile. In 1999, 
Maxwell et al. were the first to demonstrate 
a crucial role for pVHL in the regulation 
of hypoxia-inducible factor 1α (HIF1α)39, 
and over the next 5 years the details of the 
pVHL–HIF pathway and the role of the 
VCB–CR complex in targeting HIFs for 
polyubiquitylation and proteasomal  
degradation were elucidated (FIG. 3).

The crystal structure of the VCB com-
plex bound to the HIF1α carboxy-terminal 
oxygen-dependent degradation domain 
supported previous data32 showing that 
the HIFα (HIF1α or HIF2α (also known 
as EPAS1)) peptide binds exclusively to 
the β-domain of pVHL40,41. This bind-
ing is dependent on hydroxylation of two 
conserved proline residues within HIFα by 
prolyl hydroxylase 1 PHD1 (also known as 
EGLN2), PHD2 and PHD3, which require 
oxygen as a co-substrate and are thus only 
active under normoxic conditions41–45 
(FIG. 3). Prolyl-hydroxylation of HIFα ena-
bles its recognition and ubiquity lation by 
the VCB–CR complex, and polyubiquity-
lated HIFs are recognized and degraded 
by the cellular proteasome. Under hypoxic 
physiological conditions (or in the absence 
of functional pVHL), HIFα accumulates 
and forms hetero dimers with HIF1β. These 
hetero dimers translocate to the nucleus, 
where they bind to hypoxia-response ele-
ments (HREs)46. According to genome-
wide chromatin immunoprecipitation 
combined with DNA sequencing or mRNA 
micro array experiments, the number of 
direct HIF target genes is currently >800 
(REFS 47,48), and many of these genes 

Figure 1 | History of research on the von Hippel–Lindau (VHL) gene. ccRCC, clear-cell renal cell carcinoma; HIF, hypoxia-inducible factor; VCB,  
pVHL–elongin C–elongin B; VCB–CR, pVHL–elongin C–elongin B–cullin 2–RBX1; VEGF, vascular endothelial growth factor. 
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promote adaptation to acute or chronic 
hypoxia49. HIFs also indirectly regulate gene 
expression by transactivating genes encod-
ing microRNAs50 and chromatin-modifying 
enzymes47,51–53. HIFs thus have a crucial role 
in cellular adaptation to reduced oxygen 
tension: functional pVHL is necessary to 
switch off this adaptation under normoxic 
conditions, and loss of pVHL function as 
a result of, for example, biallelic inactiva-
tion of the VHL gene impairs HIFα desta-
bilization. This promotes inappropriate 
activation of downstream target genes that 
would normally be activated only under 
hypoxic conditions and thereby contributes 
directly to tumorigenesis. Consistent with 
the notion that regulation of HIFα is the 
key tumour suppressor function of pVHL, a 
large proportion of disease-associated VHL 
mutations are predicted to and have been 
demonstrated to significantly impair the 
interaction between pVHL and HIF40,41,54–56.

Other than HIF1α and HIF2α, addi-
tional potential pVHL ubiquitylation 
substrates have been described, including 
atypical protein kinase C57 and the large 
subunit of RNA polymerase II58, although 
their significance in ccRCC tumorigenesis 
is uncertain.

The HIF transcription factors. HIF tran-
scription factors exist as heterodimers with 
an α-subunit (HIF1α, HIF2α or HIF3α) and 
a stable β-subunit (HIF1β; also known as 
aryl hydrocarbon receptor nuclear trans-
locator (ARNT))46. Whereas HIF1α is ubiq-
uitously expressed, expression of HIF2α is 
mainly restricted to endothelial, lung, renal 
and hepatic cells. Both HIF1α and HIF2α 
are stabilized and activated by hypoxia and 
dimerize with HIF1β. Likewise, both iso-
forms activate transcription of target genes 
by binding to the same HRE. However, HIF1 
and HIF2 are not functionally redundant. 
Array studies indicate that HIF1 induces 
apoptotic pathways that are not targeted by 

HIF2 and preferentially drives the expres-
sion of genes that are involved in the glyco-
lytic pathway, whereas HIF2 preferentially 
promotes growth and angiogenesis59–61. 
Furthermore, the relative contributions of 
the two paralogues to the control of specific 
HIF target genes can differ in different  
cellular contexts61.

Accumulating evidence from the past 
10 years suggests that HIF2, rather than 
HIF1, is the key driver of renal cancer 
progression (reviewed in REF. 62). In vitro 
and cell-line xenograft studies suggest that 
HIF2 is both necessary and sufficient for 
the growth of transformed VHL−/− RCC 
cell lines and for much of the pathology 
that has been described in genetically engi-
neered mouse models in which VHL has 
been inactivated in specific tissues63–70. By 
contrast, HIF1 is not merely dispensable 
in the context of ccRCC but might actually 
function as a tumour suppressor9,55,60,68–73. 
However, it should be noted that only HIF1, 
but not HIF2, has so far been shown to pro-
mote renal dysplasia and carcinogenesis in 
mice74,75. Interestingly, HIF2, but not HIF1, 
activates mTOR complex 1 (mTORC1)76. 

HIF-independent functions of pVHL. 
Although less thoroughly characterized, 
pVHL also has HIF-independent functions, 
including assembly and regulation of the 
extracellular matrix; microtubule stabilization 
and maintenance of the primary cilium; regu-
lation of apoptosis; control of cell senescence; 
and transcriptional regulation (TABLE 2). Many 
of these roles have been discovered through 
biochemical interactions, but there is also evi-
dence from VHL analysis in Caenorhabditis 
elegans77 and microarray analyses in mam-
malian cell lines78–81 that support the notion 
of HIF-independent gene expression changes 
induced by VHL loss. The extent to which 
HIF-independent functions of pVHL cooper-
ate with HIF dysregulation in ccRCC  
tumorigenesis is currently unknown.

VHL genotype–phenotype correlations
Interfamilial variations in phenotype, particu-
larly in the frequency of PCCs82, became well 
recognized in the 1980s. Since 1993, germline 
VHL mutations have been reported in >900 
families with VHL disease83,84, and it has been 
possible to define genotype–pheno type cor-
relations. The first 53 amino acids of pVHL30 
show poor evolutionary conservation, 
and no unequivocal mutations have been 
reported in this domain83,84. The majority of 
patients with truncating mutations or exon 
deletions have type 1 VHL disease84 (that 
is, no PCCs) (TABLE 1). Interestingly, among 
those with type 1 VHL disease, a subgroup 
of patients with a contiguous deletion of all 
or part of VHL and the nearby gene BRK1 
(BRICK1, SCAR/WAVE actin-nucleating 
complex subunit; also known as HSPC300 
and C3orf10) develop retinal and CNS 
haemangioblastomas but have a low-risk of 
RCC (sometimes called the type 1B pheno-
type)85–88. Kindreds with type 2 VHL disease 
usually have a germline missense mutation 
(84%)84; most of these families are further 
characterized as having type 2B VHL dis-
ease. Subsequent analysis has suggested that 
amino acid substitutions on the protein sur-
face confer a higher risk of PCC than substi-
tution of amino acids buried deep within the 
protein core89.

In vitro modelling of pVHL mutations 
associated with different subtypes of VHL 
disease suggests that the risk of developing 
haemangioblastoma or ccRCC is correlated 
with the ability of mutant pVHL to impair 
HIF activity9,55,56. Whereas type 1 and type 2B 
VHL disease mutations are grossly defec-
tive with respect to HIF regulation, type 2A 
mutations seem to be far less compromised 
with respect to HIF1α regulation. By con-
trast, certain type 2C VHL disease mutations 
retain their ability to downregulate HIF1α9,55, 
implicating HIF-independent mechanisms 
in the pathogenesis of VHL-associated PCCs. 
Several studies have suggested that patients 
with nonsense and frameshift mutations have 
a higher risk of ccRCC and haemangioblas-
tomas than patients with missense muta-
tions89–91. It can be speculated that complete 
loss of pVHL function is lethal or disadvanta-
geous for PCC precursor cells. In addition 
to the phenotypic variability associated with 
allelic heterogeneity, genetic modifiers might 
influence the phenotypic expression of VHL 
disease79,92,93.

VHL and congenital polycythaemias
Almost a decade after the identification of 
heterozygous germline VHL mutations in 
VHL disease, it was found that some forms 

Table 1 | Genotype–phenotype correlations in VHL disease

VHL disease 
subtype

Clinical phenotype Type of VHL mutation HIF expression 
relative to wild type*

1 ccRCC; 
haemangioblastoma

Deletion, nonsense, 
frameshift and missense

↑↑↑

2A Haemangioblastoma; 
phaeochromocytoma

Missense ↑

2B ccRCC; 
haemangioblastoma; 
phaeochromocytoma

Missense ↑↑

2C Phaeochromocytoma Missense Normal

ccRCC, clear-cell renal cell carcinoma; HIF, hypoxia-inducible factor; VHL, von Hippel–Lindau.  
*‘↑’ indicates increased relative to wild type. 
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of congenital secondary polycythaemias 
(CSPs) are caused by inherited specific VHL 
mutations in an autosomal-recessive man-
ner (that is, affected individuals are homo-
zygous or compound hetero zygous)94–98. 
The most common VHL polycythaemia 
mutation is the homozygous 598C→T muta-
tion, resulting in the amino acid substitu-
tion R200W94. This mutation is endemic 
on the Italian island of Ischia and in the 
Chuvash Autonomous Republic of the 
Russian Federation (which has led to coin-
ing of the term ‘Chuvash polycythaemia’), 
and sporadic cases are reported elsewhere in 
the world. Additional VHL variants associ-
ated with CSP have also been described99. 
Although VHL-associated CSP is considered 
to be a recessive disease, several independ-
ent cases of patients with CSP who are 
heterozygous for VHL mutations have been 
reported in the literature99. There have 
been no reports on tumour development in 
patients with VHL-associated CSP, except 
for two cases of isolated haemangioblas-
toma and a recent description of a patient 
who harboured compound heterozygous 

mutations of VHL (V130I and R200W) and 
presented with polycythaemia at age 7, then 
developed PCC in his 30s100. Heterozygous 
carriers of the R200W mutation have no 
increased risk of cancer, and parents of 
patients with Chuvash polycythaemia are 
normally healthy. A knock-in R200W trans-
genic mouse and a zebrafish vhl-null mutant 
also exhibit polycythaemia without tumour 
formation101,102. Polycythaemia is not a com-
mon manifestation of VHL disease, although 
it can occur as a paraneoplastic syndrome in 
individuals with familial or sporadic ccRCC, 
PCC or haemangioblastoma103,104.

The molecular mechanism underlying 
VHL-associated CSPs is debated. The lack 
of tumorigenesis in VHL-associated CSPs 
is notable, and two main theories have been 
proposed to explain the pathogenesis of the 
two diseases. The first theory proposes that 
whereas the polycythaemia-associated VHL 
mutants seem to result in a relatively mild 
defect in oxygen sensing that might only 
affect a subset of HIF target genes, more-
severe dysregulation of HIFα is necessary to 
promote tumour formation. An alternative 
theory proposes an involvement of different 
molecular pathways for the two clinical enti-
ties. Until recently, no congenital polycythae-
mia associated with VHL homo zygous or 
compound heterozygous mutations outside 
VHL exon 3 had been described. Thus, it had 
been suggested that the genomic configura-
tion of the 3ʹ region of VHL exon 3 has a 
specific erythropoiesis-promoting effect. 
This effect is thought to be independent of 
erythro poietin and is instead mediated by 
hyperactivation of tyrosine-protein kinase 
JAK2 (REF. 105). Most published studies 
suggest that, on balance, the R200W muta-
tion results in a relatively mild but detect-
able defect in oxygen sensing94,97,101,105 and 
that HIF2 is more important than HIF1 
in the pathogenesis of VHL-associated 
CSPs63,64,101,106–108. Consistent with this, 
gain-of-function mutations in EPAS1 can be 
associated with congenital polycythaemia99.

Loss of VHL in sporadic ccRCC
The Knudson one-hit and two-hit models of 
tumorigenesis predict that sporadic cancers 
might be associated with somatic mutations 
in the same locus that is affected in the cor-
responding hereditary cancer109. Aberrant 
patterns in the VHL gene were first identi-
fied in ccRCC cell lines in 1993 (REF. 11), 
and it is now clear that somatic biallelic 
inactivation of VHL occurs in most sporadic 
ccRCCs110–113. The reported incidence of 
somatic VHL mutations in sporadic ccRCC 
varies up to 91%28,114–118. Mutations in 

non-coding regions of VHL have been 
described119. In addition, methylation of 
VHL that results in gene silencing occurs in 
5–30% of sporadic ccRCC cases, and LOH 
occurs in up to 98%111,120.

Of the somatic VHL mutations identified 
in sporadic ccRCC, 55% are frameshift or 
nonsense mutations. However, nearly 250 
different missense mutations (accounting for 
32% of all mutations) have been described 
in sporadic ccRCC118. Whereas frameshift 
and nonsense mutations are highly likely to 
result in loss of pVHL function, missense 
VHL mutations have more diverse effects, 
and experimental data from multiple studies 
support the hypothesis that individual muta-
tions have varied effects on the integrity of 
pVHL and the stabilization of HIFα. Indeed, 
some mutant pVHL isoforms seem to 
behave similarly to wild-type pVHL in terms 
of HIFα stabilization121, suggesting that they 
might represent passenger or bystander 
mutations rather than driver mutations that 
generate a growth advantage.

Somatic inactivation of the VHL gene 
is also observed in around 40% of sporadic 
retinal and CNS haemangioblastomas10,122,123. 
Sporadic PCCs infrequently harbour 
somatic VHL mutations124, although up to 
10% of people with apparently sporadic PCC 
may have germline VHL mutations125.

pVHL as a biomarker in sporadic ccRCC
From 1993 to 2010, VHL was the only gene 
that was known to be frequently mutated 
in ccRCC, and this prompted many groups 
to address the question as to whether VHL 
mutational status — namely, the presence or 
absence of mutation, the type of mutation 
or alteration, or the effect of the mutation or 
alteration on the function of pVHL — might 
provide a useful biomarker in ccRCC114. 
However, so far there is no clear evidence that 
the presence or absence of VHL mutations, 
or the type or nature of the mutation, influ-
ences outcome in sporadic ccRCC. As yet, 
few studies have examined a role for VHL as 
a potential predictive marker in ccRCC126–133, 
mainly because effective treatment options 
have come into widespread use only recently. 
One of the major hurdles relates to the col-
lection of tissues of adequate quality for DNA 
extraction and sequencing: most clinical trials 
collect formalin-fixed paraffin-embedded 
(FFPE) tissue rather than fresh-frozen tis-
sue, and the quality of DNA extracted from 
FFPE tissue is generally inferior. Therefore, 
the frequency of VHL mutations reported in 
many of these studies is lower than might be 
expected from other studies, implying a  
possible skewing of the results.

Figure 2 | Ribbon diagram illustrating the sec-
ondary structure of the pVHL–elongin C–
elongin B complex. Von Hippel–Lindau protein 
(pVHL; pink) consists of two tightly coupled 
domains, α and β23. The β-domain consists of 
seven strands arranged in two β-sheets in a sand-
wich arrangement with an α-helix, and it has the 
properties of a substrate docking site. The 
α-domain consists of three α-helices and binds to 
elongin C (blue). The H4 helix of elongin C fits 
into an extended groove formed by the H1, H2 
and H3 helices of the pVHL α-domain. The pVHL–
elongin C complex nucleates a complex contain-
ing elongin B (green), cullin 2 (not shown) and the 
RING finger protein RBX1 (not shown).
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As understanding of the molecular path-
ways downstream of VHL expands, various 
groups are investigating whether a combi-
nation of VHL mutational status and other 
molecular markers (for example, expression 
of HIF-target genes) might prove more use-
ful as prognostic markers than VHL alone, 
but no unequivocal prognostic biomarkers 
have so far been identified. An alternative 
way of classifying VHL-deficient tumours 
was described by Gordan et al.71, who 
analysed VHL genotype, as well as HIF1α, 
HIF2α and MYC expression, in 160 primary 
tumours and subdivided the tumours into 3 
groups with distinct molecular characteris-
tics: tumours with wild-type VHL alleles and 
undetectable HIFα protein expression (des-
ignated VHL WT); VHL-deficient tumours 
expressing detectable HIF1α and HIF2α pro-
teins (designated H1H2); and VHL-deficient 
tumours expressing only HIF2α  (designated 
H2). H2 tumours displayed enhanced MYC 
activity and higher rates of proliferation rela-
tive to H1H2 tumours regardless of stage, 
and also displayed different gene expres-
sion profiles, implying the existence of two 
biologically distinct types of VHL-deficient 
ccRCCs: those that produce HIF1α and 
those that do not.

Other mutations in ccRCC
In contrast to most other epithelial tumour 
types, mutations in genes such as BRAF, 
TP53, PTEN, RB1, epidermal growth factor
receptor (EGFR) and ERBB2 are uncom-
mon in ccRCC134,135. Until 2010, basic 
research into ccRCC was dominated by 
studies focused on VHL, the HIF transcrip-
tion factors and putative target genes with 
HREs, although it had been documented 
that VHL inactivation alone was insufficient 
for ccRCC development136,137. Segments of 
chromosome 3p that show recurrent loss in 
ccRCC include 3p12, 3p13–14.2, 3p21  
and 3p25–26 (in which VHL is located) and, 
15 years ago, allelic loss at 3p21 was 
hypothesized to be important in ccRCC 
development138,139.

Recent studies using massively parallel 
sequencing technologies have implicated sev-
eral novel driver genes in ccRCC. Additional 
TSGs have been identified on chromo-
some 3p: BRCA1-associated protein 1  
(BAP1; mutated in 8–11% of ccRCCs)116,140,141, 
SET domain-containing 2 (SETD2; mutated 
in 3–12% of ccRCCs)117,134,140–143 and poly-
bromo 1 (PBRM1; mutated in 41% of 
ccRCCs)117,140,141,144,145. Mutations in BAP1 and 
PBRM1 are usually mutually exclusive and are 
associated with different tumour biology and 
patient outcomes146. The three genes all have 

important functions in chromatin biology, 
and ccRCC-relevant mutations have also been 
described in other genes encoding chromatin-
modifying enzymes, including lysine-specific 
demethylase 5C (KDM5C; mutated in 4–9% 
of ccRCCs)134,140 and KDM6A (mutated in 
1–7% of ccRCCs)117,134,142,147. Furthermore, 
mutations relevant to ccRCC have been 
described in genes involved in the ubiquitin-
mediated proteolysis pathway140. In addition, 
in approximately 20% of ccRCCs, mutations 
have been found in several genes encoding 
key regulators in the mTORC1 pathway, 
including MTOR, tuberous sclerosis 1 (TSC1), 
PIK3CA (which encodes the PI3K catalytic 
subunit-α) and PTEN146. Additional pathways 
and components that are recurrently dysregu-
lated in ccRCC include DNA methylation, 
p53-related pathways and mRNA process-
ing28,148. Remodelling of cellular metabolism 
has been highlighted as a recurrent pattern  
in ccRCC that correlates with tumour stage 
and severity148.

Within ccRCC tumours there is sig-
nificant mutation heterogeneity, which 
raises the possibility that tumour subclones 
harbouring different mutations might 
have different responses to treatments149. 
Somatic mutations are classified into 
ubiquitous, shared and private muta-
tions according to their prevalence149. 
Ubiquitous mutations, such as those in 
VHL, indicate early, truncal events and are 
present in every tumour cell. Shared and 
private mutations are found in progres-
sively smaller subclones. In ccRCCs that 

harbour VHL mutations, chromosome 3p 
loss and VHL mutations occur ubiquitously 
throughout the tumour149.

Therapeutic implications of pVHL
The discovery of the VHL gene and the 
identification of its crucial role in regulating 
the HIF-mediated response to hypoxia have 
facilitated considerable changes in ccRCC 
treatment over the past 15 years. Drugs that 
modulate the pVHL–HIF–VEGF pathway 
have proven benefit in treating ccRCC and 
are now the standard of care for patients 
with metastatic disease, with established 
superiority over cytokine therapies150. Such 
drugs include multiple tyrosine kinase 
inhibitors that target the VEGF receptors 
(such as sunitinib, sorafenib, pazopanib and 
axitinib, among others), inhibitors of the 
mTOR pathway (such as temsirolimus and 
everolimus) and the monoclonal anti-VEGF 
antibody bevacizumab.

Targeting HIF2α. As HIF2 seems to be cru-
cial in the development of ccRCC, targeting 
HIF2α would seem to be a sensible thera-
peutic strategy to treat this type of cancer. 
However, with the exception of the steroid 
hormone receptors, targeting DNA-binding 
transcription factors with drug-like small 
organic molecules has historically been 
relatively unsuccessful. Nevertheless, several 
potential strategies to inhibit HIF2α have 
been identified. Small molecules that allos-
terically inhibit HIF2α and that antagonize 
HIF2 hetero dimerization and DNA binding 

Figure 3 | Oxygen-dependent hypoxia-inducible factor regulation. In normoxic conditions, 
hypoxia-inducible factor-1α (HIF1α) and HIF2α  are hydroxylated on one or both of two conserved pro-
line residues by prolyl hydroxylase 1 (PHD1), PHD2 and PHD3. Prolyl-hydroxylated HIFα is recognized 
by the pVHL–elongin C (ELC)–elongin B–cullin 2 (CUL2)–RBX1 (VCB–CR) E3 ubiquitin ligase complex 
and targeted for ubiquitylation (Ub) and proteasomal degradation. In hypoxic conditions, PHD1,  
PHD2 and PHD3 are inactive (oxygen is an essential cofactor). HIFα therefore accumulates and forms 
hetero dimers with HIF1β. These hetero dimers translocate to the nucleus, bind to hypoxia-response 
elements (HREs) and induce the transcription of genes involved in adaptations to hypoxia.
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have been described151,152. Proof-of-concept 
experiments suggest that it might be possible 
to target HIF2α with DNA-binding polyam-
ides that disrupt the HIF2α–DNA interface, 
although at present the bioavailability of 
such agents is inadequate153–155. Acriflavine is 
a small molecule that inhibits the ability of 
HIF1α and HIF2α to dimerize with HIF1β 
and has been shown to inhibit tumour 
growth and vascularization156. Alternatively, 
if reliable methods for systemic delivery 
of small interfering RNA (siRNA) become 
available, siRNA targeting of HIF2α might 
become a future therapeutic option. Two 
groups have been screening for drugs that 
indirectly inhibit HIF2α in VHL-null ccRCC 
cells, although the specificity of these com-
pounds remains to be established157–160. Many 
other compounds indirectly inhibit HIFα, 
including mTOR inhibitors, heat shock 
90 kDa protein (HSP90) inhibitors and  
histone deacetylase (HDAC) inhibitors161.

pVHL and synthetic lethality. Two genes 
are synthetically lethal if mutation of either 
alone is compatible with cell viability but 
mutation of both leads to cell death162. 

Synthetic lethality thus provides a frame-
work to discover drugs that might pref-
erentially kill cancer cells harbouring a 
cancer-relevant gene yet leave normal cells 
unharmed. Results from two synthetic-
lethality screens targeting VHL-deficient 
cells have been reported. A cell-based, 
small-molecule synthetic-lethality screen 
identified a compound, STF-62247, that 
selectively induces autophagic cell death 
in VHL-deficient cells but not in those 
expressing wild-type VHL163. From the same 
screen, a second compound, STF-31, was 
identified that inhibits glucose uptake by 
GLUT1 and exhibits enhanced cytotoxicity 
against VHL-deficient ccRCC164. The second 
synthetic-lethality screen, which used short 
hairpin RNAs targeting 88 kinases, reported 
that silencing of cyclin-dependent kinase 6 
(CDK6), MET (also known as HGFR) and 
MEK1(also known as MAPKK1) prefer-
entially inhibited the growth of VHL-null 
cells compared with their counterparts in 
which wild-type pVHL had been reconsti-
tuted80. Interestingly, in both screens, the 
selective killing of cells lacking VHL was 
HIF-independent, suggesting that therapies 

targeting these pathways might cooperate 
with those targeting HIF. Another study 
showed that lack of a functional VHL gene 
product sensitizes RCC cells to the apop-
totic effects of the protein synthesis  
inhibitor verrucarin A165.

pVHL proteostasis. Following synthesis on 
ribosomes, nascent pVHL is shuttled from 
the ribosomal machinery with the assistance 
of HSP70 (REF. 166). Formation of the VCB 
complex is then mediated by the hetero-
oligomeric chaperonin TCP1 ring complex 
(TRiC; also known as chaperonin-containing 
TCP1 (CCT))166,167. TRiC facilitates pVHL 
folding, thereby enabling its association with 
elongin B and elongin C to form the VCB 
complex166. Failure to generate a correctly 
folded pVHL or a mature VCB complex 
results in degradation of pVHL through the 
ubiquitin–proteasome system. pVHL deg-
radation specifically requires another chap-
erone, HSP90, which does not participate 
in pVHL folding168. As distinct chaperone 
pathways mediate the folding and quality 
control of pVHL, an enhanced understand-
ing of the mechanisms by which destabilized 

Table 2 | pVHL functions

Mechanism HIFα-dependent functions HIFα-independent functions

Angiogenesis Regulation of VEGF37,38, PDGF38 and 
adrenomedullin-159, among others

None

Glucose uptake and metabolism Regulation of GLUT1 and GLUT3 (also known 
as SLC2A3)38, hexokinase 2, phosphoglycerate 
kinase 1 (REF. 59), LDHA59, phosphofructokinase 1 
and pyruvate dehydrogenase59, among others

None

Chemotaxis Regulation of SDF1 (REF. 172) and CXCR4 
(REF. 173)

None

Cell proliferation and survival Regulation of TGFα174 and EGFR175 None

Homeostasis Regulation of external pH through CAIX136 None

Assembly and regulation of the 
extracellular matrix

Regulation of E-cadherin176–178 and MMPs179,180 Regulation of fibronectin9,55,176,181–185, collagen IV176,182, 
adherens, tight junctions and integrins178,186,187, and MMPs183

Microtubule stabilization and 
maintenance of the primary cilium

Primary cilia modulation180 Association and stabilization of microtubules188–196

Regulation of apoptosis HIF modulation of p53 (REFS 197,198–200) and 
NF-κB201–203 activity, and suppression of BNIP3 
(REF. 60)

Activation of p53 transcriptional activity204,205, modulation of 
NF-κB activity206 and downregulation of JUNB (which is known 
to blunt neuronal apoptosis during NGF withdrawal)207*

Cell senescence None Control of cell senescence through RB and the SWI2/SNF2 
chromatin remodeller p400 (REFS 208,209)

Transcriptional regulation None Involvement in ubiquitylation of the large subunit of RNA 
polymerase II in response to oxidative stress58,21, control of 
influence on HuR211–213, binding to SP1 transcription factor214–216

Erythropoiesis Regulation of erythropoietin64 None

Cell cycle progression Regulation of cyclin D1 (REFS 60,79,217,218) None

Lipid metabolism Adipose differentiation-related protein59 None

BNIP3, BCL2/adenovirus E1B-interacting protein 3; CAIX, carbonic anhydrase IX; CXCR4, CXC-chemokine receptor 4; EGFR, epidermal growth factor receptor; 
GLUT, glucose transporter; HIF, hypoxia-inducible factor; HuR, human antigen R (also known as ELAV1); LDHA, lactate dehydrogenase A; MMPs, matrix 
metalloproteinases; pVHL, von Hippel–Lindau protein; NF-κB, nuclear factor-κB; NGF, nerve growth factor; PDGF, platelet-derived growth factor; SDF1, 
stromal-cell derived factor 1 (encoded by CXCL12); TGFα, transforming growth factor-α; VEGF, vascular endothelial growth factor. *Dysregulation of this pathway is 
speculated to be important in the pathogenesis of phaeochromocytomas.
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pVHL mutants are targeted for proteasomal 
degradation could provide strategies for 
refolding and stabilization of such mutants 
to allow their incorporation into the VCB 
complex and potentially restore their tumour 
suppressor activity. The proteasome inhibi-
tors bortezomib and MG132 are both capable 
of increasing VHL expression levels, and a 
cell-based screen of the Prestwick Chemical 
Library compounds has identified several 
compounds that upregulate VHLW117A in 
VHLW117A-infected cell lines169. A recent study 
showed that the protein levels of pVHLR167Q 
(a recurrent mutation in type 2B VHL 
disease) dictate its ability to down regulate 
HIF2α and suppress tumour growth, and that 
the proteasome inhibitors bortezomib and 
carfilzomib stabilize VHLR167Q and increase 
its ability to downregulate HIF2α170.

Summary and conclusions
The identification of the VHL TSG in 1993 
led to the elucidation of the genetic basis for 
a rare genetic disorder, and this finding has 
been shown to be of broad medical and sci-
entific interest. VHL is frequently inactivated 
at an early stage in sporadic ccRCC. Insights 
gained from functional analysis of the VHL 
gene product, pVHL, have afforded novel 
insights into the molecular mechanisms of 
cellular oxygen sensing and provided the 
basis for the introduction of novel targeted 
therapies into the routine clinical treatment 
of advanced ccRCC. In the past 5 years, sev-
eral additional potential driver genes have 
been identified in ccRCC, one of which has 
already been demonstrated to interact with 
the pVHL–HIF axis171. Future challenges lie 
in linking the pathways implicated by these 
genes with the effects of dysfunctional pVHL 
that result from VHL mutations, and with 
the ultimate aim of establishing a roadmap 
of tumour ontogeny for ccRCC.
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