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Abstract

The process of mitophagy, in whichmitochondria are selectively turned over
at the autophagolysosome, plays a central role in both eliminating dysfunc-
tional mitochondria and reducing mitochondrial mass as an adaptive re-
sponse to key physiological stresses, such as hypoxia, nutrient deprivation,
and DNA damage. Defects in mitophagy have been linked to altered mi-
tochondrial metabolism, production of excess reactive oxygen species and
ferroptosis, heightened inflammasome activation, altered cell fate decisions,
and senescence, among other cellular consequences. Consequently, func-
tional mitophagy contributes to proper tissue differentiation and repair and
metabolic homeostasis, limiting inflammatory responses and modulating
tumor progression and metastasis. This review examines the major path-
ways that control mitophagy, including PINK1-dependent mitophagy and
BNIP3/NIX-dependent mitophagy. It also discusses the cellular signaling
mechanisms used to sense mitochondrial dysfunction to activate mitophagy
and how defective mitophagy results in deregulated tumor cell growth and
cancer.
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MAINTAINING THE INTEGRITY OF DYNAMIC MITOCHONDRIA
AS METABOLIC SIGNALING HUBS

Mitochondria, known as the powerhouses of the cell, are double-membraned organelles that
evolved from endosymbiotic Alphaproteobacteria with their own genome and capacity to gen-
erate ATP through respiration; oxidize fatty acids; provide numerous metabolic intermediates
essential for nucleotide, amino acid, and lipid biosynthesis; synthesize iron-sulphur complexes;
and sequester calcium and other ions (Pagliarini & Rutter 2013). Mitochondrial integrity pre-
vents programmed cell death (Gao et al. 2019, Vyas et al. 2016), while mitochondrial production
of ROS (reactive oxygen species), acetyl CoA (coenzyme A), and other signaling intermediates
regulates gene expression and cell fate determination (Matilainen et al. 2017, Sena & Chandel
2012).

Cellular mechanisms have evolved to maintain mitochondrial integrity and to preserve the
strategic role of mitochondria in cell growth (D’Amico et al. 2017). Such mechanisms include the
ability to undergo fission and fusion to modulate the efficiency of mitochondrial metabolite trans-
port and to partition damaged mitochondrial DNA (mtDNA) (Mishra & Chan 2014). Mitochon-
dria also dynamically control cristae structures, densities of electron chain supercomplexes, and
rates of uncoupling to burn or conserve energy as needed (Liesa & Shirihai 2013). The mitochon-
drial unfolded protein response (UPRmt) is activated in response to amino acid deprivation and
other stresses that cause an imbalance in the production of nuclear-encoded versus mitochondrial-
encoded mitochondrial proteins that would otherwise disrupt mitochondrial function (D’Amico
et al. 2017). Critically, cells regulate overall mitochondrial mass as a means to adapt to stress by
modulating rates of mitochondrial biogenesis (Ploumi et al. 2017) and inducing mitochondrial
turnover via mitophagy, which is the focus of this review.

Mitochondrial function is subverted in a multitude of ways during tumorigenesis, including
through altered signaling to promote mitochondrial biogenesis (Vyas et al. 2016), induction of
DRP1 (dynamin-related protein 1)-dependent fission (Kashatus et al. 2015,Serasinghe et al. 2015),
acquired resistance to apoptosis (Vyas et al. 2016),metabolic reprogramming to benefit cell growth
(Kimmelman & White 2017, Zong et al. 2016), selection for specific mtDNA mutations (Zong
et al. 2016), and elevated mitochondrial ROS production (Sena & Chandel 2012), among other
effects as reviewed extensively elsewhere (Vyas et al. 2016,Zong et al. 2016).The role ofmitophagy
in cancer has been examined as a consequence of inhibiting general autophagy in tumor models,
where accumulation of defective mitochondria with altered metabolic and signaling activity was
observed, resulting in a failure of tumors to progress to malignancy (Kimmelman &White 2017).
However, general autophagy also contributes to the tumor phenotype as a result of its role in
amino acid recycling and cell-cell interactions in the tumor microenvironment (Kimmelman &
White 2017), so it is difficult to assign a specific activity to mitophagy in cancer based on studies
that eliminate all autophagy. In this review, we parse out specific functions of mitophagy in cancer
with a particular focus on the most thoroughly studied mitophagy regulators in cancer, PINK1
and BNIP3/NIX. We refer the reader to Supplemental Table 1 for an extensive summary of
other mitophagy regulators.

PINK1-DEPENDENT MITOPHAGY IN CANCER

Eliminating depolarized mitochondria through the stabilization of PTEN-induced putative
kinase 1 (PINK1) at the outer mitochondrial membrane (OMM) is one of the major mechanisms
of mitophagy in the cell (Harper et al. 2018). In healthy mitochondria, PINK1 is imported
to the inner mitochondrial membrane (IMM) in a manner dependent on its amino-terminal
mitochondrial targeting sequence and on mitochondrial membrane potential (MMP), where it is
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Figure 1

PINK1-dependent (a) and BNIP3/NIX-dependent (b) mitophagy. (a) Proteolytic cleavage of PINK1 is dependent on mitochondrial
membrane depolarization (��mt), and thus stresses that induce ��mt cause PINK1 kinase to accumulate at the outer mitochondrial
membrane (OMM) in a complex with translocase of outer membrane (TOM). PINK1 functions as a ubiquitin kinase that
phosphorylates ubiquitin and Parkin (within its ubiquitin-like domain), resulting in recruitment of Parkin ubiquitin ligase activity at the
OMM, where it ubiquitinates other substrates (S), such as VDAC1 and MFN2. Interaction of phospho-ubiquitinated mitochondrial
targets with processed LC3 requires cargo receptor molecules that simultaneously bind ubiquitin and LC3, including OPTN, which is
recruited to mitochondria with TBK1. (b) BNIP3 and NIX are stress-induced mitochondrial receptor proteins induced at a
transcriptional level by HIF-1 in response to hypoxia. BNIP3 is also transcriptionally induced by PPARα, FOXO3a, RB/E2F, the
glucocorticoid receptor (GR), and NF-κB in response to other stresses. Both BNIP3 and NIX interact directly with LC3 through
conserved LC3-interacting region motifs in their amino termini to promote targeting of mitochondria to growing phagophore
membranes and mitochondrial turnover by autophagy. Figure elements adapted from Servier Medical Art (https://smart.servier.com),
under license CC-BY 3.0.

cleaved in its transmembrane (TM) domain by PINK/PGAM5-associated rhomboid-like (PARL)
proteases before being retrotranslocated to the cytosol and degraded by the proteasome according
to the N-end rule (Figure 1a) (Harper et al. 2018, Sekine et al. 2019). When mitochondria lose
MMP, PINK1 accumulates at the OMM, forms high–molecular weight complexes with the TOM
(translocase of outer membrane) complex, and becomes activated through autophosphorylation
(Figure 1a) (Harper et al. 2018, Sekine et al. 2019). Increases in PINK1 protein levels can thus be
used as a measure of mitophagy induction under certain experimental conditions (Supplemental
Table 2). The ATAD3A AAA+-ATPase bridges the IMM and OMM to facilitate PINK1 import
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to the matrix for degradation and to prevent aberrant accumulation of PINK1 ( Jin et al. 2018).
Loss or mutation of ATAD3A increases mitophagy of both depolarized and healthy mitochondria,
an effect that is partially rescued by PINK1 deletion ( Jin et al. 2018).

PINK1 is a ubiquitin kinase that phosphorylates key ubiquitinated substrates at the OMM,
including the Parkin E3 ubiquitin ligase encoded by PARK2. PINK1 phosphorylates Parkin on
S65 within its ubiquitin-like domain, removing it from autoinhibition and further recruiting active
Parkin to the OMM (Harper et al. 2018). Parkin-catalyzed ubiquitin conjugation of substrates
at the OMM, such as VDAC1, MFN2, TBK1 (TANK-binding kinase 1), and MIRO, amplifies
the mitochondrial “eat me” signal generated by PINK1 (Figure 1a). These phospho-ubiquitin
“eat me” signals recruit various mitophagy cargo receptors (Supplemental Table 1), including
p62/SQSTM1, OPTN (Optineurin), NDP52, TAXBP1, and others, that target mitochondria for
degradation through interaction with LC3 at the autophagosome (Figure 1a) (Harper et al. 2018,
Lazarou et al. 2015).

Parkin and PINK1 were originally identified as encoded by genetic loci (PARK2 and PARK6,
respectively) that are mutated in human Parkinson’s disease (PD), implicating mitophagy defects
in the etiology of PD (Harper et al. 2018). PARK2 maps to a common fragile site at human
chromosome 6q25–q26 that is frequently deleted in bladder, breast, lung, ovarian, and other can-
cers (Cesari et al. 2003), while PARK2 mutations have been linked to glioblastoma, colon cancer,
and lung cancer (Veeriah et al. 2010). Similarly, PARK6 expression (PINK1) is downregulated
in glioblastoma and ovarian cancer and occasionally mutated in neuroblastoma (Agnihotri et al.
2016). Parkin-null mice are susceptible to spontaneous hepatocellular carcinoma and sensitized to
irradiation-induced lymphomagenesis (Fujiwara et al. 2008, Zhang et al. 2011), while loss of either
Parkin or Pink1 promoted Kras-driven pancreatic ductal adenocarcinoma (PDAC) (Li et al. 2018).

The tumor-suppressor functions of Parkin in mouse tumor models have been attributed to
Parkin’s roles in maintaining mitochondrial function, carrying out efficient oxidative phosphory-
lation, preventing oxidative stress, and ensuring proper lipid homeostasis as a result of effective
clearance of depolarized mitochondria (Kim et al. 2011, Li et al. 2018, Zhang et al. 2011).
However, both PINK1 and Parkin also suppress HIF-1α stabilization (Agnihotri et al. 2016, Li
et al. 2018, J. Liu et al. 2017), with Parkin interacting directly with HIF-1α and ubiquitinating it
on K477 to promote its degradation ( J. Liu et al. 2017). Low Parkin levels correlate with high
HIF-1α levels and reduced metastasis-free survival in human breast cancer ( J. Liu et al. 2017).
IncreasedWarburg metabolism observed in Kras-driven PDAC when Parkin or Pink1 was deleted
was also associated with increased ROS and HIF-1α levels and rescued by HIF-1α deletion or
iron chelation (Li et al. 2018). Thus, control of HIF-1α levels may also contribute to the effect of
PINK1 or Parkin loss/inactivation in promoting Warburg metabolism in human cancers. Finally,
Parkin’s ubiquitin ligase function in cell cycle–controlled degradation complexes, including the
FBX4 Cullin-RING ligase complex that regulates cyclin levels, and its interaction with CDC20 to
enforcemitotic checkpoint control and genome stability (Gong et al. 2014,Lee et al. 2015) suggest
that Parkin may have additional growth-suppressive functions that are independent of its role in
mitophagy.

Despite its prominence in the literature as a regulator of mitophagy, the Parkin E3 ubiquitin
ligase is not widely expressed even in healthy cells and tissues, and indeed analysis of Parkin-
dependent mitophagy has frequently been performed under conditions where exogenous Parkin
is overexpressed (Lazarou et al. 2015, Orvedahl et al. 2011, Sumpter et al. 2016). However, several
other E3 ubiquitin ligases have emerged as compensating for Parkin in mitophagy, including
MUL1 E3 ubiquitin ligase, which is required for elimination of paternal mitochondria during
embryogenesis (Rojansky et al. 2016, Yun et al. 2014). In contrast to Parkin, the ARIH1 E3 ubiq-
uitin ligase is widely expressed in cancer cell lines and, importantly, was shown to be dependent
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on PINK1 activity for its mitophagy-promoting functions (Villa et al. 2017). ARIH1 is induced
by chemotherapeutic agents, such as cisplatin and etoposide, where it has been proposed that
ARIH1-dependent mitophagy protects tumor cells from therapy-induced cell death to promote
drug resistance (Villa et al. 2017).

AUTOPHAGY CARGO RECEPTORS IN MITOPHAGY AND CANCER

Autophagy cargo receptors, such as the widely studied p62/SQSTM1, interact with processed LC3
at the autophagosome through a conserved LC3-interacting region (LIR) motif and separately
with ubiquitinated chains on the cargo to promote targeted degradation by autophagy (Moscat
et al. 2016). For example, p62/SQSTM1 facilitates turnover of mitochondria in a PINK1/Parkin-
dependent manner by interacting with ubiquitinated VDAC1 at the OMM following mito-
chondrial depolarization (Geisler et al. 2010). However, p62/SQSTM1 promotes the autophagic
turnover of a wide range of cellular cargoes, and thus p62/SQSTM1 is not a mitophagy-selective
adaptor. In addition, p62/SQSTM1 is a multifunctional protein implicated in control of NRF2,
mTOR, and other cancer-relevant activities beyond autophagy, and the ubiquitin-binding domain
in p62/SQSTM1 is not required for it to promote tumorigenesis (Moscat et al. 2016). Thus, the
role of p62/SQSTM1 in cancer cannot be simply attributed to its ability to promote mitophagy.

The OPTN,NDP52, and TAX1BP1 cargo receptors may be more critical for mitophagy than
p62/SQSTM1 (Supplemental Table 1) (Heo et al. 2015, Lazarou et al. 2015,Moore &Holzbaur
2016,Wong&Holzbaur 2014).OPTN is inactivated in amyotrophic lateral sclerosis (ALS) and is
essential for PINK1/Parkin-dependent mitophagy (Moore & Holzbaur 2016,Wong &Holzbaur
2014). ALS-linked mutations in OPTN prevent its recruitment to mitochondria, suggesting that
ALS-associated neuronal defects are due to defective mitophagy (Wong&Holzbaur 2014).TBK1
is a Parkin/PINK1 target and phosphorylates OPTN, promoting the co-recruitment of OPTN
and TBK1 together to depolarized mitochondria. Similar to OPTN, mutations in TBK1 that are
associated with ALS block its ability to promote mitophagy (Moore & Holzbaur 2016). TBK1
is also activated by the cGAS-STING pathway (Vanpouille-Box et al. 2018), suggesting a link
between the sensing of cytosolic DNA, including mtDNA, and induction of mitophagy. OPTN
expression is reduced in lung cancer cell lines, and higher OPTN expression is correlated with im-
proved relapse-free survival in lung cancer patients (Liu et al. 2014). Both NDP52 and TAX1BP1
have also been implicated in PINK1-dependent mitophagy, although not as extensively as OPTN
(Moore & Holzbaur 2016).

FUNCTIONS OF BNIP3 AND NIX (BNIP3L) IN CANCER

In addition to removing damaged mitochondria via PINK1-dependent mitophagy, cells also turn
over healthy mitochondria as an adaptive response to nutrient stress. BNIP3 andNIX (also known
as BNIP3L) are stress-induced mitophagy receptors that interact directly with LC3 to promote
the turnover of otherwise healthy mitochondria (Figure 1b). Both BNIP3 and NIX are distantly
related to proapoptotic BH3 proteins, although the BH3 domains in BNIP3 and NIX are poorly
conserved (2 amino acids out of 11) and are redundant for BNIP3/NIX function (Ney 2015).
Moreover, BNIP3 and NIX promote cell survival under various physiological contexts, while loss
of BNIP3 and NIX sensitizes to cell death (Glick et al. 2012, Ney 2015).

Transcriptional control of BNIP3 and NIX expression is tightly regulated and responsive to
various physiological stresses, including hypoxia, nutrient availability, and DNA damage. Both
BNIP3 and NIX are HIF-1 targets, although BNIP3 is more sensitive to oxygen decreases than
NIX due to differential dependence on HIF-1 transactivation domains (Bruick 2000, Kasper et al.
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2005). BNIP3 and NIX are also p53 transcriptional targets (Fei et al. 2005, Feng et al. 2011),
although BNIP3 is repressed by p53 (Feng et al. 2011) while NIX is induced (Fei et al. 2005),
suggesting that each may respond differently to p53 activation and DNA damage signaling. In ad-
dition,BNIP3 is transcriptionally regulated by FOXO3a duringmuscle atrophy (Mammucari et al.
2007), PPARα in fasted liver (Lee et al. 2014), RB/E2F during cell cycle control (Tracy et al. 2007),
NF-κB during apoptosis (Shaw et al. 2008), and oncogenic Ras (Kalas et al. 2011). Consistent with
their expression patterns, BNIP3 and NIX both promote mitophagy in the ischemic heart, while
BNIP3 plays a more significant role in atrophying skeletal muscle and fasted liver (Glick et al.
2012, Lee et al. 2011, Mammucari et al. 2007). NIX is required for the differentiation of retinal
ganglion cells during embryogenesis when it is induced in mid-gestation by hypoxia, resulting in
a glycolytic switch (Esteban-Martinez et al. 2017). This NIX-dependent glycolytic switch is also
seen during the polarization of M1 macrophages (Esteban-Martinez et al. 2017). NIX is essential
for mitophagy during normal red blood cell differentiation, and loss of NIX results in anemia and
splenomegaly (Diwan et al. 2007, Sandoval et al. 2008, Schweers et al. 2007). NIX is dramatically
upregulated during erythroblast differentiation where its expression is induced by sphingosine
kinase 1 (SPHK1) (Diwan et al. 2007, Yang et al. 2019), which is notable since SPHK1 localizes to
the mitochondria in response to mitochondrial stress and is required for UPRmt (Kim & Sieburth
2018), suggesting that NIX expression may be responsive to mitochondrial stress downstream of
SPHK1.

BNIP3 andNIX are both tail-anchored proteins that integrate into the OMMvia a C-terminal
TM domain (Figure 1b) (Novak et al. 2010, Vande Velde et al. 2000). The TM domain of BNIP3
has been crystallized and consists of a glycine zipper that mediates tight homodimerization via
hydrogen bonding between polar residues on the inside of the glycine zipper, while hydrophobic
residues on the outside of the zipper stabilize the dimer in the OMM’s lipid bilayer (Sulistijo &
MacKenzie 2009). Most studies of BNIP3 and NIX focus on how they function in mitophagy as
homodimers, but these highly related proteins can also heterodimerize (Ohi et al. 1999), although
the functional significance of their heterodimerization for mitophagy remains unclear. The amino
termini of BNIP3 and NIX extend into the cytosol, where they interact to promote mitophagy
with LC3-related molecules at nascent phagophores via conserved LIRs located at amino acids 15
to 21 in BNIP3 and 43 to 49 in NIX (Hanna et al. 2012, Schwarten et al. 2009). Both BNIP3 and
NIX turn over with mitochondria, and thus their continued induction under stress is required to
maintain expression.

NIX is ubiquitinated by Parkin and promotes PINK1/Parkin-induced mitophagy (Ding et al.
2010, Gao et al. 2015). However, neither BNIP3 nor NIX requires PINK1 or Parkin to elicit
mitophagy (Zhang et al. 2016), and conversely, BNIP3 is not required for PINK1 accumulation
or for recruitment of Parkin to the OMM (Zhang et al. 2016). Parkin or PINK1 loss promotes
HIF-1 stabilization (Li et al. 2018, J. Liu et al. 2017), suggesting that, as HIF-1-target genes,
BNIP3 and NIX may be upregulated by PINK1/Parkin loss, and indeed, BNIP3 can compensate
for Parkin loss in mitophagy (Zhang et al. 2016). The functional interaction of PINK1/Parkin and
BNIP3/NIX in genetic cancer models has not been examined.

Switching cells from glucose to glutamine/galactose as a source of carbon induced NIX-
dependent mitophagy, which required recruitment of the small GTPase Rheb to the OMM,
where it interacted directly with both NIX and LC3 in a trimolecular complex to promote mi-
tophagy (Melser et al. 2013). It was proposed that Rheb-induced mitophagy promoted oxidative
efficiency under the new growth conditions by eliminating damaged mitochondria (Melser et al.
2013). Canonically, RHEB interacts with mTOR at the lysosome in the presence of amino acids to
activate mTOR and promote cell growth (Vyas et al. 2016). However, the noncanonical role for
RHEB in promoting mitophagy is reportedly independent of mTOR (Melser et al. 2013). Bnip3
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also interacts with Rheb, but this was not linked to mitophagy (Li et al. 2007). Rheb’s GTPase
activity was suppressed by its interaction with Bnip3, resulting in reduced mTOR signaling. Con-
versely, disrupting the Bnip3-Rheb interaction promoted mTOR activity and cell growth, consis-
tent with a growth-suppressive role for BNIP3 (Li et al. 2007). These reports suggest that BNIP3
and NIX differ in their functional interactions with RHEB.

BNIP3 and NIX protein levels are elevated at early stages of various human solid cancers as
tumors become hypoxic, including breast cancer (Sowter et al. 2003). The BNIP3 locus at chro-
mosome 10q26.3 is most frequently deleted in metastatic progression of triple-negative breast
cancer (TNBC) (Chourasia et al. 2015, Koop et al. 2009). TNBC is the subtype of breast cancer
that exhibits the strongest HIF signature and Warburg metabolism (Montagner et al. 2012), and
loss of BNIP3 combined with high HIF-1 expression predicted poor metastasis-free survival
specifically for TNBC (Chourasia et al. 2015). In an MMTV-PyMT (mouse mammary tumor
virus–polyoma middle T antigen) mouse model of breast cancer, loss of Bnip3 promoted tumor
growth, resulted in faster progression to invasive carcinoma, reduced latency of lung metastasis,
and reduced overall survival (Chourasia et al. 2015). Consistently, Bnip3 knockdown promoted
tumor growth and metastasis in an orthotopic model of mammary tumorigenesis (Manka et al.
2005). The increased aggressiveness of mammary tumors in this model lacking Bnip3 (compared
to wild-type controls) was linked to reduced mitophagy, dysfunctional mitochondria, increased
ROS, and HIF-1 stabilization, with attendant increases in rates of glycolysis and angiogenesis
in the tumors (Chourasia et al. 2015). These data suggest that BNIP3 acts as a brake on HIF-1
and that there is selective pressure to inactivate BNIP3 downstream of HIF-1 as tumors progress
to becoming invasive (Chourasia et al. 2015). TNBC is the breast cancer subtype with the
highest degree of mitochondrial dysfunction, possibly due to defective mitophagy, and this is
currently being exploited to develop novel therapeutic approaches (Guha et al. 2018, Lee et al.
2019).

Hypermethylation of the BNIP3 promoter is a common mechanism of BNIP3 inactivation in
other human cancers, including gastric, pancreatic, liver, lung, and hematological malignancies
(Murai et al. 2005, Okami et al. 2004). Epigenetic silencing of BNIP3 in human pancreatic cancer
was linked to chemoresistance and poor prognosis (Akada et al. 2005, Erkan et al. 2005), consistent
with tumor-suppressive functions for BNIP3. Loss of Bnip3 in the KC (LSL-KrasG12D;Pdx1-Cre)
mouse model of PDAC resulted in reduced tumor latency and increased progression to metas-
tasis, supporting a tumor-suppressor role for Bnip3 (Macleod et al., unpublished manuscript).
Accelerated PDAC in this model was associated with reduced mitophagy in acinar cells and
increased acinar-ductal metaplasia at early stages of tumorigenesis. By contrast, loss of NIX in
the KPC (LSL-KrasG12D;Tp53R172H;Pdx1-Cre) model of PDAC delayed tumorigenesis (Humpton
et al. 2019) and was associated with reduced mitophagy, increased oxidative metabolism, and
attenuated progression from the pancreatic intraepithelial neoplasia stage to PDAC; consistently
elevated NIX expression in a cohort of PDAC patients was linked to worse prognosis (Humpton
et al. 2019). These findings point to divergent roles for BNIP3 and NIX in pancreatic cancer,
with BNIP3 acting as a tumor suppressor and NIX as a tumor promoter. These differences may
be explained by the expression of BNIP3 and NIX at different stages of disease or in different
cell types (acinar versus ductal) and require further investigation.

MITOCHONDRIAL FISSION PROMOTES MITOPHAGY
OF DEPOLARIZED MITOCHONDRIA

During starvation periods, healthymitochondria are protected from turnover byOPA1-dependent
fusion accompanied by inhibition of fission at functional mitochondria (Gomes et al. 2011,
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Rambold et al. 2011). By contrast, depolarized mitochondria fail to fuse, undergo fragmentation,
and are preferentially targeted for degradation (Gomes et al. 2011, Rambold et al. 2011). In ad-
dition to its critical role in mitochondrial fission (Mishra & Chan 2014), DRP1 is involved in
selecting dysfunctional regions of the mitochondrial network for mitophagy (Cho et al. 2019).
DRP1 is activated by loss of MMP (��mt) and is recruited to the OMM via MFF and FIS1 re-
ceptors (Mishra & Chan 2014). FIS1 is also required for PINK1 recruitment to mitochondria in
leukemia stem cells and for activation of mitophagy in response to AML (acute myeloid leukemia)
therapy (Pei et al. 2018). At this time, it is not clear whether FIS1 has additional functions in mi-
tochondria that contribute to its ability to promote mitophagy, such as integrating fission activity
with the autophagy machinery.

At the OMM, DRP1 also interacts with ZIP1 to regulate MMP via altered mitochondrial up-
take of Zn2+ through the mitochondrial calcium uniporter (Cho et al. 2019). The DRP1-ZIP1
interaction takes place at sites of mitochondrial fission, although GTPase-deficient DRP1 can
still interact with ZIP1 to promote ��mt, indicating that DRP1 can regulate MMP independent
of its role in fission (Cho et al. 2019). The DRP1-ZIP1 interaction was required for recruitment
of GFP (green fluorescent protein)-Parkin to mitochondria in response to hyperglycemia, and
chelating Zn2+ or blocking the DRP1-ZIP1 interaction impeded��mt,GFP-Parkin recruitment,
and mitophagy (Cho et al. 2019). This caused short mitochondria with reduced MMP to accumu-
late, as damagedmitochondria could not be turned over by mitophagy.Mitochondrial recruitment
of ARIH1 was also dependent on DRP1-ZIP1. These results explain how fission is coordinated
with mitophagy to promote selective turnover of regions of the mitochondrial network that are
depolarized or damaged.

RAS transformation of fibroblasts induces ��mt, increased mitochondrial ROS, and DRP1-
dependent mitochondrial fission (Serasinghe et al. 2015), and DRP1 phosphorylation on S616 by
ERK2 is required for RAS transformation (Kashatus et al. 2015). RAS also induces expression of
BNIP3 and NIX (Humpton et al. 2019, Kalas et al. 2011), but it is not yet clear if DRP1-induced
fission is required for RAS transformation to promote mitophagy or simply to promote fission.

In addition to its role in selecting depolarized mitochondria for turnover, mitochondrial fis-
sion has also been postulated to be required for mitophagy due to the limiting size constraints
on autophagosomal cargo. However, turnover of the endoplasmic reticulum (ER) by ER-phagy
occurs in a piecemeal manner, thereby raising the probability of piecemeal mitophagy. MTX1
was identified as an OMM protein that functions as an autophagy receptor in piecemeal mi-
tophagy that interacts with LC3C, does not require fission or PINK1/Parkin to function, and
plays a housekeeping function in cells (LeGuerroue et al. 2017).Thus, it remains to be determined
to what extent different mitophagy pathways rely on DRP1 or fission to promote mitochondrial
turnover.

SENSING MITOCHONDRIAL DYSFUNCTION
TO ACTIVATE MITOPHAGY

The stabilization of PINK1 at the OMM in response to ��mt explains how one type of mito-
chondrial dysfunction induces mitophagy. However, signaling pathways that induce mitophagy in
response to other mitochondrial stresses, such as inhibition of respiration, imbalanced nuclear-
to-mitochondrial protein levels, mtDNA mutation, and elevated mitochondrial ROS production,
have not been fully elucidated. ATF4 is induced by mitochondrial stress (Quiros et al. 2017), in-
cluding respiratory chain inhibition and the UPRmt, but a link between ATF4 and mitophagy
has not been made. BNIP3 and NIX are transcriptionally induced by factors that are sensitive to
ROS (HIF-1, FOXOs, p53, and NF-κB) linking BNIP3/NIX-dependent mitophagy to elevated
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mitochondrial ROS. However, there remains much to be determined about how mitochondrial
dysfunction induces mitophagy.

Reduced respiration arising frommtDNAmutation or exposure to respiratory chain inhibitors,
such as metformin, impairs the efficiency of ATP synthesis and activates AMPK (Herzig & Shaw
2018, Martinez-Reyes et al. 2016). AMPK activation was associated with induction of mitophagy
arising from extended mitotic arrest (Domenech et al. 2015) where AMPK phosphorylated the
glycolysis regulator PFKFB3 to promote glycolysis and survival (Domenech et al. 2015). AMPK
also induces general autophagy via phosphorylation and activation ofULK1 (Egan et al. 2011), and
AMPK phosphorylates both MFF and FIS1 (Pei et al. 2018, Toyama et al. 2016), which are mito-
chondrial receptors for DRP1, and thus could contribute to mitophagy induction indirectly. Loss
of LKB1, the regulatory kinase upstream of AMPK (Herzig & Shaw 2018), leads to mitochondrial
dysfunction, including lower oxygen consumption, altered expression of electron transport chain
components, increased ROS production, lower ATP production, and altered lipid and amino acid
metabolism (Gurumurthy et al. 2010, Kottakis et al. 2016,Masand et al. 2018,Nakada et al. 2010).
However, it is not fully resolved to what extent this was due to defective AMPK activation or the
result of defective mitophagy (He et al. 2017, Yang et al. 2017); this is another area requiring
further investigation.

Many of the stresses arising from defective mitophagy (ROS, NAD+ depletion, AMPK ac-
tivation, and cytosolic mtDNA) interact in feedback loops to activate mitophagy pathways, re-
sulting in amplification of mitochondrial damage when mitophagy is inactivated (Figure 2).
For example, failure to remove dysfunctional mitochondria by mitophagy leads to high ROS
and cell death, including ferroptosis, a necrosis-like cell death that results from redox stress
and lipid peroxides (Gao et al. 2019). Cysteine depletion induces mitochondrial lipid ROS, mi-
tochondrial fragmentation, depolarization, and cristae disruption prior to ferroptosis. Deple-
tion of mitochondria through overexpression of Parkin in combination with uncoupling agent
CCCP (carbonylcyanide-3-chlorophenylhydrazone) protected against ferroptosis (Gao et al.
2019).

MITOCHONDRIAL DYSFUNCTION IN CELLULAR SENESCENCE

Age-related nonalcoholic fatty liver disease has been linked to dysfunctional mitochondria in
senescent hepatocytes that were unable to oxidize fats efficiently, and lipid accumulation in age-
ing liver was prevented by eliminating senescent hepatocytes (Ogrodnik et al. 2017). Inhibition
of PGC1β-dependent mitochondrial biogenesis reduced mitochondrial mass and attenuated age-
related senescence in mouse liver, consistent with signals from dysfunctional mitochondria pro-
moting senescence (Correia-Melo et al. 2016). Indeed, mitochondrial dysfunction, including de-
creased oxidative phosphorylation and elevated ROS, is a key feature of senescent cells that is
associated with reduced mitophagy (Wiley et al. 2016). Promoting mitophagy by overexpressing
Parkin in the presence of CCCP to uncouple mitochondrial respiration inhibited DNA damage–
induced replicative senescence, indicating that dysfunctional mitochondria are required for senes-
cence and that mitophagy limits cellular senescence (Correia-Melo et al. 2016).

Artificially inducing mitochondrial dysfunction by treating cells with respiratory chain in-
hibitors, depleting mtDNA, or knocking down mitochondrial Sirtuins (Sirt3 or Sirt5) in-
duced cellular senescence in primary human fibroblasts and was termed MiDAS (mitochondrial
dysfunction–associated senescence) (Wiley et al. 2016). Pyruvate blocked MiDAS (Wiley et al.
2016), suggesting that NAD+ depletion arising from complex I inhibition stimulates cellular
senescence (Hosios & Vander Heiden 2018), possibly as a result of Sirtuin inactivation (Vyas et al.
2016). Mitochondrial dysfunction also induced AMPK, and dominant negative AMPK conferred
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Figure 2

Consequences of mitochondrial dysfunction linked to defective mitophagy. Inhibition of mitophagy causes the accumulation of
dysfunctional mitochondria that have membrane depolarization, attenuated capacity to generate NAD+ and ATP through oxidative
phosphorylation, elevated reactive oxygen species (ROS) production, and release of mitochondrial DNA (mtDNA) to the cytosol,
which results in activation of inflammatory responses and ultimately cell death if mitochondrial integrity is not restored. Many of the
stresses arising from defective mitophagy (ROS, NAD+ depletion, AMPK activation, and cytosolic mtDNA) also themselves activate
mitophagy, leading to a vicious cycle of mitochondrial damage when mitophagy is inactivated. It is unclear to what extent other
mitochondrial stress responses, including the mitochondrial unfolded protein response, mitochondrial fusion, and mitochondrial
biogenesis, can compensate for defective mitophagy. Figure elements adapted from Servier Medical Art (https://smart.servier.com),
under license CC-BY 3.0.

resistance to MiDAS (Wiley et al. 2016), but whether this was associated with altered rates of
mitophagy was not examined. AMPK activation by mitochondrial dysfunction did contribute to
a p53- and p16-dependent growth arrest during MiDAS. Interestingly, the senescence-associated
secretory phenotype associated with MiDAS was distinct from that induced by DNA damage
(Wiley et al. 2016). This raises the question of whether mtDNA is released during MiDAS to ac-
tivate the NLRP3 inflammasome or cGAS-STING pathway as a means of modulating cytokine
production, as discussed below. In summary, cellular senescence is linked to mitochondrial dys-
function, possibly arising from defects in mitophagy in a variety of physiological settings, although
the expression and activity of specific mitophagy receptors during cellular senescence remain to
be determined.

MITOPHAGY IN TISSUE STEM CELLS AND CANCER STEM CELLS

The balance between glycolysis and oxidative metabolism has been reported in various systems
to determine rates of stem cell quiescence versus differentiation (Ito & Suda 2014). Reduced res-
piratory capacity is required for self-renewal of hematopoietic stem cells (HSCs) and is achieved
through increased mitophagy of respiring mitochondria to limit ATP generation and maintain

50 Macleod

A
nn

u.
 R

ev
. C

an
ce

r 
B

io
l. 

20
20

.4
:4

1-
60

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
15

1.
34

.3
5.

20
8 

on
 1

0/
23

/2
1.

 S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 

https://smart.servier.com


CA04CH03_Macleod ARjats.cls February 5, 2020 14:30

stem cells in a slow-cycling state (Ho et al. 2017, Ito et al. 2016, Vannini et al. 2016). Activating
autophagy in older HSCs promoted quiescence and protected against replication stress and age-
ing (Ho et al. 2017). Mitophagy also plays a role in the preferential segregation of younger, more
functional mitochondria to daughter stem cells compared to nonstem cells (Katajisto et al. 2015).
However, recent work has suggested that mitochondrial mass in stem cells is underestimated due
to experimental overreliance on MitoTracker® and other mitochondrial dyes that are pumped
out of stem cells more efficiently than nonstem cells (de Almeida et al. 2017). This study did not
dispute that HSCs have a lower respiratory capacity than nonstem cells but suggested that this
was not explained by altered mitochondrial mass. However, this study relied on measurement of
mtDNA and effects of depolarization with CCCP that are also subject to criticism (Supplemental
Table 2). A more recent study employing the genetic tools Mito-EGFP (enhanced GFP) and
Mito-QC (quality control) to measure mitochondrial mass and mitophagy, respectively, as op-
posed to mitochondrial dyes, has confirmed previous data showing that HSCs do indeed have
fewer mitochondria than nonstem cells and that mitophagy is more readily induced in HSCs than
non-HSCs (Vannini et al. 2019). These studies emphasize the importance of employing relevant
techniques and not overinterpreting mitochondrial mass data without directly parsing what is due
to mitophagy versus biogenesis (Supplemental Table 2).

Cancer stem cells (CSCs) contribute to the most insidious aspects of human cancer, includ-
ing the ability to promote distant metastases, therapy resistance, tumor dormancy, and minimal
residual disease (Shibue &Weinberg 2017). Like tissue stem cells, CSCs are dependent on general
autophagy for many aspects of their phenotype (Smith&Macleod 2019), andmore recently,CSCs
have been reported to exploit mitophagy to maintain their self-renewal properties (K. Liu et al.
2017, Pei et al. 2018, Whelan et al. 2017). Parkin-dependent mitophagy in esophageal squamous
cell carcinoma cells was essential to prevent cell death during epithelial-to-mesenchymal transi-
tion and for the expression of the stem cell marker CD44 (Whelan et al. 2017). Mitophagy was
also required to maintain hepatic CSCs by eliminating mitochondrial p53 (K. Liu et al. 2017).Mi-
tophagy inhibition, PINK1 activation, and PINK1-dependent phosphorylation of p53 promoted
the nuclear translocation of p53, where it antagonized expression of the stem cell factor NANOG
(K. Liu et al. 2017). CD44 is a p53-target gene, suggesting that mitophagy-dependent regulation
of CD44 levels may be p53 dependent (Smith &Macleod 2019). Turnover of transcription factors
that get sequestered at mitochondria could be a more broadly acting mechanism to explain how
mitophagy controls cell fate and stress responses (Smith & Macleod 2019).

MITOPHAGY ATTENUATES ACTIVATION OF cGAS-STING
AND THE NLRP3 INFLAMMASOME

Mitochondrial dysfunction can result in release of mtDNA to the cytoplasm and activation of
both the cGAS-STING pathway and the NLRP3 inflammasome to promote antitumor immu-
nity (Figure 2) (Chen et al. 2016, Vanpouille-Box et al. 2018, Zhou et al. 2011). Activation of the
cGAS-STING pathway by cytosolic mtDNA induces a type I interferon response mediated via
activation of TBK1 and IRF3 (Chen et al. 2016). Activation of TBK1 also promotes mitophagy
through recruitment of cargo receptors, such as OPTN, while STING trafficking itself stimu-
lates autophagy by promoting autophagosome biogenesis at the ER-Golgi junction (Gui et al.
2019). Thus, TBK1 activation provides a key link between dysfunctional mitochondria sensed via
cytosolic mtDNA and mitophagy activation.

Oxidized mtDNA, or newly synthesized mtDNA that has yet to be packaged into TFAM-
positive nucleoids, is released from damaged mitochondria and binds directly to the NLRP3
inflammasome to induce procaspase-1 activation and IL-1β release (Shimada et al. 2012,
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Vanpouille-Box et al. 2018, Zhong et al. 2018). Caspase-1 activation at the mitochondria induces
further mitochondrial damage, including ��mt, ROS generation, and mtDNA release that am-
plify NLRP3 activation in a feedback loop. NLRP3 inflammasome activation induces Parkin-
dependent mitophagy (Zhong et al. 2016) although Parkin is cleaved by caspase-1 to limit mi-
tophagy with the resultant excess inflammation leading to pyroptosis, again allowing caspase-1 to
amplify its own activation (Yu et al. 2014).

In summary, by eliminating damaged mitochondria, mitophagy likely limits mtDNA release
and activation of cGAS-STING or the NLRP3 inflammasome in a feedback loop (Chen et al.
2016, Vanpouille-Box et al. 2018, Yu et al. 2014, Zhou et al. 2011). Recent data suggest that
the cGAS-STING and NLRP3 pathways communicate with each other via NLRP3 being ac-
tivated by STING’s effects on the release of potassium from the lysosome (Vanpouille-Box et al.
2018).

MITOPHAGY IN THE RESPONSE TO DNA DAMAGE
AND NAD+ DEPLETION

Boosting NAD+ levels in cells and tissues of mice by feeding them nicotinamide riboside (NR)
promoted long-term hematopoiesis that depended upon the induction of mitophagy in long-term
repopulatingHSCs (Vannini et al. 2019).NAD+ levels in cells are heavily influenced bymitochon-
drial function and by complex I activity in particular (Figure 2). Inhibition of complex I with met-
formin or other drugs makes tumor cells more dependent on pyruvate and lactate dehydrogenase
activity for amino acid biosynthesis and survival (Hosios & Vander Heiden 2018). DNA damage
also depletes cellular NAD+ levels due to elevated poly(ADP-ribose) polymerase (PARP) activ-
ity that consumes NAD+ to catalyze covalent linkage of PARP groups to proteins (Gupte et al.
2017). As a result,NAD+-dependent Sirtuins are inhibited by bothmitochondrial dysfunction and
DNA damage (Figure 2) (Fang et al. 2014, Gupte et al. 2017). Sirtuins modulate many growth-
regulatory processes in the cell (Vyas et al. 2016), including the NAD+-dependent deacetylation
of PGC1α, which is required for mitochondrial biogenesis, fatty acid oxidation (Gerhart-Hines
et al. 2011), and the activation of FOXO3a via deacetylation, which promotes the expression of
autophagy genes, including BNIP3 (Mammucari et al. 2007). This suggests that Sirtuins control
mitochondrial mass and function. The simultaneous induction of mitochondrial biogenesis and
mitophagy by Sirtuins supports the hypothesis that coordinated induction of both processes al-
lows mitochondria to be more efficiently reprogrammed in response to nutrient stress (Ploumi
et al. 2017).

Both xeroderma pigmentosum (XP) and ataxia telangiectasia (AT) are cancer predisposition
syndromes in which faulty DNA repair plays a major causative role in disease. However, defective
mitophagy arising fromNAD+ exhaustion and reduced Sirtuin activity also contributes to disease
etiology (Fang et al. 2014, 2016). In particular, neurodegeneration in XPA individuals is attributed
to reduced mitophagy and is rescued by PARP inhibition (Fang et al. 2014). Similarly, loss of
ATM kinase caused ��mt, increased mitochondrial ROS (Valentin-Vega et al. 2012), and reduced
mitophagy (Fang et al. 2016). Replenishing NAD+ levels and activating SIRT1 in ATM-deficient
neurons induced mitophagy, inhibited cell death, and promoted neuronal differentiation (Fang
et al. 2016).

In atm-1 worms (Caenorhabditis elegans), replenishing NAD+ levels with NR promoted mi-
tophagy through increased levels of dct-1 in a manner dependent on sirt2 and on the upstream
regulator of dct-1, daf-16 (Fang et al. 2016).The gene dct-1 is theC. elegans homolog of BNIP3/NIX
that limits ageing in worms by promoting mitophagy (Palikaras et al. 2015). It is not known
whether BNIP3 or NIX plays a similar role in mammalian systems by promoting mitochondrial
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function downstream of Sirtuins or whether BNIP3 or NIX is reduced in XP or AT, but these are
logical future avenues of investigation.

Fanconi anemia (FA) is a different cancer predisposition syndrome linked to defective DNA
damage sensing and repair, and like XP and AT, mitophagy is defective in FA (Supplemental
Table 1) (Sumpter et al. 2016). FANC-C colocalizes with Parkin at mitochondria in response
to depolarization, and FANC-C deficiency caused the accumulation of dysfunctional mitochon-
dria and heightened inflammasome activation (Sumpter et al. 2016), suggesting a direct role for
FANC-C in mitophagy.

Overall, defects in mitophagy appear to be a common feature of a variety of cancer predis-
position syndromes arising from DNA repair defects, which suggests that treatments to increase
mitophagy could benefit patient outcomes. This work also raises the question of whether DNA
damage induced by genotoxic agents used in conventional cancer therapy also inhibits mitophagy
to cause mitochondrial dysfunction, and if so, does it do so by similar mechanisms? There is se-
lection for epigenetic silencing of BNIP3 in drug-resistant PDAC, and re-expression of BNIP3
promotes drug sensitivity (Akada et al. 2005, Erkan et al. 2005). Currently, general autophagy in-
hibitors are being proposed as adjuvant therapy in cancer treatments, but if these drugs inhibit
mitophagy as would be expected, will this lead to drug resistance by other means?

In conclusion, mitophagy is emerging as a selective form of autophagy that exerts far-reaching
effects on cell growth and cell fate, including on cellular senescence, stemness, cellularmetabolism,
various stress responses including inflammatory responses, and cell viability (Figure 3). Ongoing
research may soon allow us to determine whether mitophagy represents a valid therapeutic target
separate from efforts to target general autophagy.

Transformation

 

Functional metabolism

Stemness

Cell fate and differentiation control

Promotes

•
•
•

 

Cellular senescence

Inflammation

Cell death (apoptosis, ferroptosis,
and pyroptosis)

Suppresses

•
•
•

Mitophagy

Figure 3

The role of mitophagy in cellular function and transformation. Mitophagy promotes key aspects of mitochondrial metabolism that
sustain amino acid, lipid, and nucleotide biosynthesis; supports the stem cell phenotype and different types of differentiation by
determining rates of glycolysis; modulates cell fate and differentiation via mitochondrial reprogramming, cellular remodeling, turnover
of fate-determining transcription factors sequestered at the mitochondria; limits cellular senescence and alters the secretome of
senescent cells; attenuates inflammation by preventing inflammasome and cGAS-STING activation; and reduces cell death by
promoting mitochondrial function, including preventing apoptosis, ferroptosis, and pyroptosis. How these cellular housekeeping
functions of mitophagy modulate cellular transformation is an area of ongoing investigation. Figure elements adapted from Servier
Medical Art (https://smart.servier.com), under license CC-BY 3.0.
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SUMMARY POINTS

1. Mitophagy plays a housekeeping role in normal cells by eliminating dysfunctional or ex-
cess mitochondria, ensuring that reactive oxygen species (ROS), cytosolic mitochondrial
DNA, and metabolic disequilibrium are limited while sustaining NAD+ and ATP levels
and the production of key mitochondrial metabolites required for nucleotides, amino
acids, and lipids.

2. There are multiple mitophagy pathways in the cell, including PINK1-dependent mi-
tophagy and BNIP3/NIX-dependent mitophagy; readers are referred to Supplemental
Table 1 for an extensive list of mitophagy modulators.

3. PINK1-dependent mitophagy eliminates depolarized mitochondria in concert with dif-
ferent E3 ubiquitin ligases, including Parkin, ARIH1, MUL1, and others.

4. BNIP3 and NIX are induced by hypoxia, nutrient deprivation, and other stresses, and
interact directly with LC3 to promote mitophagy; BNIP3 and NIX are functionally ho-
mologous but their expression in different tissues and stages of tumorigenesis may con-
tribute to distinct roles in development and cancer.

5. DRP1 and mitochondrial fission proteins, including FIS1 andMFF, promote mitophagy
by both identifying dysfunctional regions of themitochondrial network and reducing the
size ofmitochondria, allowing them to bemore readily engulfed by nascent phagophores.

6. Mitochondrial mass in cells is determined by the balance between rates of mitophagy
(reducing mass) and mitochondrial biogenesis (increasing mass). Thus, measurement of
mitochondrial mass does not equate to measurement of mitophagy; readers are referred
to Supplemental Table 2 for more discussion of how to measure mitophagy robustly.

7. Mitophagy limits cellular senescence, promotes stemness, reduces inflammasome and
cGAS-STING activation, and prevents cell death, including ferroptosis.

8. The role of mitophagy in cancer is not yet fully understood; based on their expression in
human cancer and effects of their deletion in mouse tumor models, PINK1/Parkin and
BNIP3 appear to function as suppressors of tumor growth while, intriguingly, NIX may
promote tumorigenesis.

FUTURE ISSUES

1. How mitochondrial dysfunction engages signaling pathways to induce mitophagy is a
key area requiring further investigation. Currently, we understand how mitochondrial
depolarization and mitochondrial ROS (indirectly) and AMPK activation (indirectly)
induce mitophagy, but are there other signaling pathways activated by mitochondrial
dysfunction that induce mitophagy? For example, the role of mitochondrial lipid signal-
ing pathways in mitophagy, such as those activating sphingosine kinase activity, requires
further analysis; mitochondrial sequestration of transcription factors (such as p53), re-
leased or alternatively turned over in response to mitochondrial stress, may explain how
mitophagy is activated or how mitophagy alters cell fate. Do specific components of the
mitochondrial unfolded protein response engage with the mitophagy machinery?

2. Much remains to be determined about how the different mitophagy pathways interact
with each other. For example, BNIP3 and NIX are both induced by hypoxia to promote
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mitophagy, but so is FUNDC1, and it is not clear how or if these mitophagy modu-
lators interact. Conflicting data on how PINK1-dependent mitophagy interacts with
BNIP3/NIX-dependent mitophagy need to be clarified through robust genetic and in
vivo analyses.

3. PINK1 and Parkin play a role in cell cycle and HIF-1 stabilization alongside their func-
tion in mitophagy. There is a need to separate the different functions of PINK1/Parkin
to determine how PINK1-dependent mitophagy specifically contributes to tumor phe-
notypes observed in humans and mice when PINK1 or Parkin is deleted or mutated.

4. BNIP3 andNIX are upregulated followingmatrix detachment, and further investigation
is needed into the role of BNIP3/NIX-dependent mitophagy in metastasis that arises
from the survival of detached cells.

5. Areas of ongoing research include how mitophagy is coordinated with mitochondrial
biogenesis to achieve wholesale mitochondrial replacement as an adaptation to certain
stresses in normal tissues, and how this is deregulated in cancer, seemingly to promote
biogenesis at the expense of mitophagy.

6. The role of mitophagy in cellular reprogramming is an area of expanding interest, in-
cluding dedifferentiation/redifferentiation events that occur during oncogenic processes
such as metaplasia through the elimination of mitochondria to modulate energy avail-
ability, differentiation-promotingmetabolites, the sequestration of key transcription fac-
tors, etc.

7. Cancer cachexia, in which loss of muscle and fat mass in cancer patients reduces body
weight and the ability of the patient to tolerate treatment regimens and survive, has
been linked to mitochondrial dysfunction and elevated mitophagy. It remains to be de-
termined to what extent mitophagy contributes to how tumor growth promotes atrophy
of muscle and adipose tissues in cachexia.
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