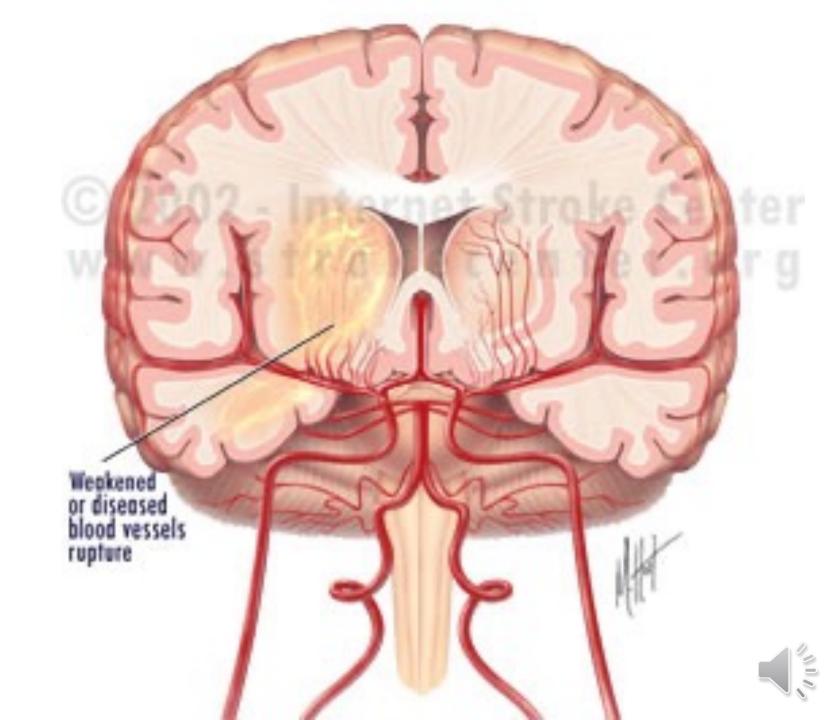
Basic Epidemiology


- Primary Spontaneous ICH
- Accounts for roughly 10-15% of all strokes
- 40-50% mortality rate
- Over 70% of survivors with significant morbidity/disability
- Half of the mortality occurs in the first two days after stroke

Branching

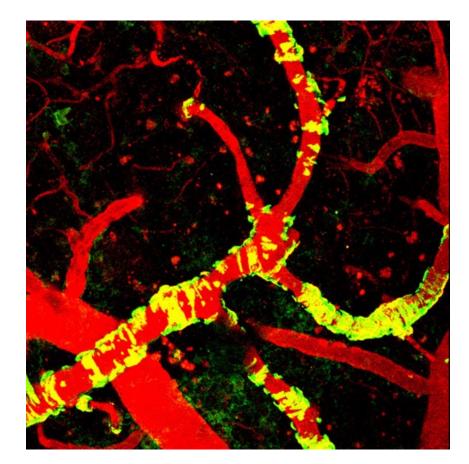
- In most vascular beds, large arteries branch into medium arteries which then branch into smaller arteries and then most importantly into
- Arterioles (smaller than arteries) mediate most of that blood pressure
- Thus, the pressure at the feeding vessel is distributed across a large vascular bed.

Hypertension and Cerebral Small Vessel Disease

- Theoretically, the pressure on lenticulostriates and small capillaries branching off of the MCA and Basilar artery without an intervening resistance bed is very high
- Population attributable risk is proportion of disease that would have been prevented if the risk factor did not exist

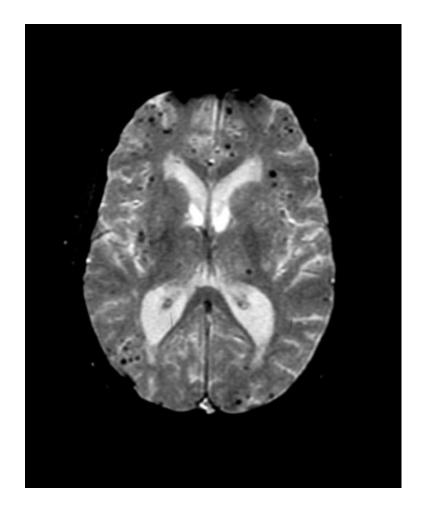
	Risk (95% CI)					
	All ICH (n=188) Lobar ICH (n=67) Nonlobar ICH (n=121)		H			
First-degree relative 0.05 (0.02- with ICH 0.08)		0.05 (0.0-0.16)	0.04 (0.005-0	08)		
Previous ischemic stroke 0.13 (0.09- 0.18)		0.09 (0.02-0.16)	0.14 (0.08-0.2	0)		
Frequent alcohol u	1	0.05 (0.00		0.04 (0.03		
	Та	ble 2.				
Hypertension					. 1	
	At	tributable Ris	k in Percentages:	Univariate Ana	lysis'	
AppE2 or E4						
	Risk	Factor	Type of Stroke	Odds Ratio	Attributable Risk, %	95% CI
ApoE2 or E4			Type of Stroke All ischemic	Odds Ratio	Attributable Risk, %	95% CI 7-43
	Нур	ertension				
	Hyp Diał	ertension betes	All ischemic	1.7	27	7-43
Apo22 of E4	Hyp Diał Hist	ertension betes cory of MI	All ischemic All ischemic	1.7 2.7	27 21	7-43 11-29 2-16
	Hyp Dial Hist Hyp	ertension betes ory of MI ertension	All ischemic All ischemic All ischemic	1.7 2.7 2.1	27 21 9	7-43 11-29 2-16 31-85
	Hyp Dial Hist Hyp Dial	ertension betes ory of MI ertension betes	All ischemic All ischemic All ischemic Small vessel	1.7 2.7 2.1 5.0	27 21 9 68	7-43 11-29

Importance of Location


- At one time, hypertension was felt to be the cause of ICH in all locations and cerebral amyloid angiopathy to be a rare cause of ICH
- Population-based studies
 - To determine the attributable risk of each risk factor
 - To control for regional differences in risk factor

Cerebral Amyloid Angiopathy

- Amyloid plaques made of beta-sheets of proteins, make blood vessels more rigid and fragile.
- CAA occurs in 70% of Alzheimer's disease patients
- In less than 10% of people less than 70 years of age but more than 50% of people age >90 years
- Occurs almost exclusively in the lobar regions of the brain and cerebellum


Cerebral Amyloid Angiopathy

- Disease of the elderly (~50% of ICH in >80)
- Deposition of amyloid protein in media/adventitia of small cortical arteries, arterioles and capillaries
- Cortex and cerebellum

Cerebral Amyloid Angiopathy

- Pathology
 - Destruction of normal cortical vasculature
- Microbleeds on MRI GRE sequences
 - More common in blacks with ICH?*
 - (Microbleeds also caused by HTN)
- Lobar ICH
- Association with Apo E2/E4

*(Kidwell) Neurology 2008;71:1176-1182.

On the importance of Intraventricular Hemorrhage

- Rupture of hemorrhage into the ventricles is an independent risk factor for worse outcomes and death
- Ventricular hemorrhage may lead to hydrocephalus, may require management with ventriculostomy or thrombolytic agent into the ventricles
- Over 945 patients with deep basal ganglia hemorrhages, rates of IVH varied by location (p<0.0001)
 - Caudate: 89%
 - Putamen: 23%
 - Thalamus 64%

	GERFHS – Discovery Set				ERICH – Replication Set			
Variables	Incontinence)	Dysmobil	ity	Incontine	Incontinence		ity
	OR (CI)	p-value	OR (CI)	p-value	OR (CI)	p-value	OR (CI)	p-value
IVH Volume	1.50 (1.10, 2.06)	0.0117	1.58 (1.17, 2.15)	0.0031	1.42 (1.27, 1.60)	<.0001	1.40 (1.24, 1.57)	<.0001
Age (per year)	1.07 (1.04,1.10)	<.0001	1.06 (1.03, 1.09)	<.0001	1.04 (1.03, 1.05)	<.0001	1.04 (1.03, 1.05)	<.0001
ICH Volume	1.78 (1.25, 2.54)	.0015	1.85 (1.32, 2.60)	0.0004	1.77 (1.51, 2.06)	<.0001	2.22 (1.91, 2.58)	<.0001
Location								
-Lobar	0.33 (0.15,0.72)	.005	0.18 (0.09, 0.40)	<.0001	0.51 (0.36,0.72)	.0001	0.27 (0.19, 0.37)	<.0001
-Deep	REF	REF	REF	REF	REF	REF	REF	REF
-Brainstem	5.22 (1.05, 25.95)	.043	1.84 (0.35, 9.62)	.4712	3.39 (1.83, 6.29)	.0001	3.71 (2.06,6.69)	<.0001
-Cerebellar	1.73 (0.62, 4.83)	.30	1.48 (0.55, 3.99)	.4419	0.70 (0.41, 1.20)	.19	0.77 (0.48 1.24)	.28
-Primary IVH					1.72 (0.58, 5.03)	.33	1.54 (0.55, 4.32)	.42
GCS at presentation (per point)	0.89 (0.77 1.03)	.1198	0.88 (0.76, 1.03)	0.1020	0.90 (0.87, 0.94)	<.0001	0.88 (0.84, 0.93)	<.0001
mRS before ICH	1.65 (1.24, 2.18)	.0006	1.71 (1.29, 2.26)	.0002	1.62 (1.38, 1.91)	<.0001	1.45 (1.22, 1.71)	<.0001 12
Female	1.42 (0.79, 2.57)	0.2412	0.99 (0.56, 1.75)	0.9648	1.51 (1.15, 2.00)	0.0036	1.68 (1.29, 2.18)	0.0001

Importance of Untreated Hypertension

	AH	IS	All ICH		
	OR (95% CI)	Р	OR (95% Cl)	Р	
Untreated hypertension	3.5 (2.3- 5.2)	<0.0001	3.9 (2.3- 6.5)	<0.0001	
Treated hypertension	1.4 (1.0- 1.9)	0.0271	1.4 (1.0- 2.0)	0.0710	
History of hypercholesterolemia	0.52 (0.39- 0.69)	<0.0001	0.53 (0.37- 0.75)	0.0004	
Increasing BMI (5 U)	0.84 (0.75- 0.93)	0.0012	NS		
Use of anticoagulants	3.1 (1.8- 5.3)	<0.0001	3.6 (2.0- 6.8)	<0.0001	

Not all Hypertension?

- Untreated hypertension is a markedly greater risk of ICH than treated hypertension, especially for regions of the brain that are associated with hypertensive ICH.
- Although lack of treatment may explain the higher rate of ICH among Hispanics, AAs have similar rates of awareness, treatment and controlled HTN as whites
- Is there some other risk factor?

Hypercholesterolemia and Intracerebral Hemorrhage

- 1976 Konishi et al; Autopsy study in the Akita Prefecture found little arteriosclerotic change in cerebral blood vessels of hypertensive ICH patients; no risk from hypercholesterolemia
- 1988 Ueda et al; Prospective populationbased study; Higher serum cholesterol level associated with 50% reduction in rate of ICH.

Hypercholesterolemia and Intracerebral Hemorrhage

- 1989 Honolulu Heart Program
- 1993 Akita Pathology Study
- 1994 MRFIT Study
- 1995 Copenhagen Stroke Study
- 1996 Kaiser Permanente Medical Care Study
- 1996 Melbourne Risk Factor Study
- 1997 Kim et al
- 1999 Segal et al

Hypercholesterolemia and Intracerebral Hemorrhage

- 2001 Korea medical insurance co. study
- 2002 GERFHS Cincinnati
- 2003 Ariesen et al Meta-analysis
- 2003 Ko et al -
- 2004 GERFHS Statin and ICH
- 2007 NOMAS
- 2012 Martini et al

Hypercholesterolemia

- High cholesterol, high LDL and low HDL have been consistently associated with a paradoxical decreased association with ICH
- Some studies suggest that this is true predominately for non-lobar ICH
- Statin use has been variably associated with no to minimal effect on ICH risk but seems to offer no benefit to reducing risk
- Could AAs have less hypercholesterolemia and thereby a higher risk of non-lobar ICH?

By Location

- Non-lobar ICH:
 - OR 0.58 (0.45-0.71; p<0.001);
 - AR: -29.9
- Lobar ICH:
 - OR 0.85 (0.61-1.19; p=0.34)
 - AR: N.D.
- Almost a third of non-lobar ICH is attributable to effects from Cholesterol but no protective effect appears for lobar ICH

Brain and Cholesterol

- The brain is the largest repository of cholesterol in the human body (moreso than even the liver)
- Largely in myelin sheaths but also essential to inflammation, neurovascular unit and vascular blood-brain barrier integrity
- 95% of all brain cholesterol is synthesized locally.
 - Minor uptake of serum cholesterol
 - Brain cholesterol is metabolized locally but synthesized using the same processes as liver

Apolipoprotein E

- Apo E is a major lipoprotein
 - Transport of chol from liver to tissues
 - Reverse transport from tissue to liver
 - E4 associated with Alzheimer's and cardiovascular disease and lobar ICH
 - E2 Protective of AD and CV disease but a risk for lobar ICH

Table 1. Demographics of Patients

	Lo	bar		Non	-Lobar	
	Cases	Controls	P-val	Cases	Controls	p- <u>val</u>
N	204	508		354	936	
Age (years ± SD)	66.4 ± 16.2	63.1 ± 15.6	0.01	64.7 ± 15.1	61.3 ± 14.0	0.0001
Sex (% M)	91 (44.6%)	216 (42.5%)	0.6	188 (53.1%)	468 (50%)	0.3
Race (% B)	30 (14.7%)	73 (14.4%)	0.9	82 (23.2%)	227 (24.3%)	0.7
Education category			<0.0001			<0.0001
<12 years	48 (24%)	62 (12.2%)		94 (26.9%)	109 (11.7%)	
HS grad	74 (37%)	166 (32.7%)		133 38.21%)	330 <mark>(</mark> 35.3%)	
>12 years	78 (39%)	279 (55.0%)		122 (35.0%)	497 (53.1%)	
Hypertension	111 (54.7%)	267 (53%)	0.6	262 (74.6%)	467 (50.0%)	<0.0001
Hypercholesterolemia	85 (41.7%)	223 (43.9%)	0.6	114 (32.2%)	400 (42.7%)	0.0006
Without statins	37 (18.1%)	96 (18.8%)	0.7	52 (14.6%)	201 (21.4%)	0.007
With statins	48 (23.5%)	127 (25%)	0.8	62 (17.5%)	199 (21.2%)	0.14
Frequent alc use (%)	14 (6.9%)	31 (6.1%)	0.7	24 (6.9%)	55 (5.9%)	0.5
First deg. Rel. with ICH (%)	10 (5.0%)	10 (2.0%)	0.03	19 (5.4%)	20 (2.1%)	0.002
Prior ischemic stroke (%)	16 (8.1%)	6 (1.2%)	<0.0001	39 (11.2%)	24 (2.6%)	<0.0001

Apo E2's effect modified by Hypercholesterolemia

	Lobar ICH cases		Lobar ICH co	OR (95% CI)	
	E2 containing	All others	E2 containing	All others	
No HC	33 (38.3%)	86 (72.2%)	53 (18.5%)	232 (81.4%)	1.7 (1.1-2.8)
HC	28 (33%)	57 (67%)	27 (12.1%)	196 (87.8%)	3.6 (1.9-6.5)
	Llyn arab alaat		hly daubles th	, vial, of labo	

 Hypercholesterolemia roughly doubles the risk of lobar ICH with an Apo E2 containing genotype

Apo E4's effect not modified by Hypercholesterolemia

	Lobar ICH cases		Lobar ICH contro	OR (95% CI)	
	E4 containing	All others	E4 containing	All others	
No HC	42 (35.3%)	77 (64.7%)	73 (25.6%)	212 (74.3%)	1.5 (0.8-2.3)
HC	33 (38.8%)	52 (61.2%)	73 (32.7%)	160 (71.7%)	1.4 (0.8-2.3)

 Stratifying by HC did not affect risk of Apo E4 containing genotypes for lobar ICH

Statins

- SPARCL study Ischemic stroke cases in secondary prevention with high dose Lipitor
 – Found an increased risk of ICH with statin treatment
- McKinney et al Meta-analysis of over 90,000 cases and 90,000 controls (sometimes treated with low dose statins) and found no increased risk of ICH.

Table: Association of high cholesterol and cholesterol treatment with Lobar and Non-Lobar ICH

	Loba	r ICH	Non-Lobar ICH		
	OR [95% CI]	p-value	OR [95% CI]	p-value	
High Cholesterol	0.91 [0.66, 1.27]	0.6	0.64 [0.49, 0.82]	0.0006	
Treated with Statins*	0.93 [0.62, 1.35]	0.7	0.79 [0.57, 1.08]	0.14	
Not treated with Statins**	0.95 [0.63, 1.45]	0.8	0.63 [0.45, 0.88]	0.007	

* Comparison group is all <u>normocholesterolemia</u> plus hypercholesterolemia not treated with statins

** Comparison group is all <u>normocholesterolemia</u> plus hypercholesterolemia treated with statins

Statin use by Apo E Genotype

- Compared to Apo E3/E3
- No significant differences in non-lobar ICH
- In lobar ICH:
 - E4/E4 with statins: OR=4.5 (1.3-16.2; p=0.02)
 - E2/E4 with statins: OR=11.3 (2-64; p=0.005)
 - E2/E3 with statins: OR=2.8 (1.0-7.5; p=0.06)
- Without statins:

- E4/E4: OR=1.6 (0.27-9.4; p=0.63)

To summarize

- Hypercholesterolemia is well established to have a protective association with ICH
- This protective effect appears to be greatest in non-lobar ICH
- But the protection appears to go away with statin use – suggests it is the actual cholesterol level and not a confounder

To summarize

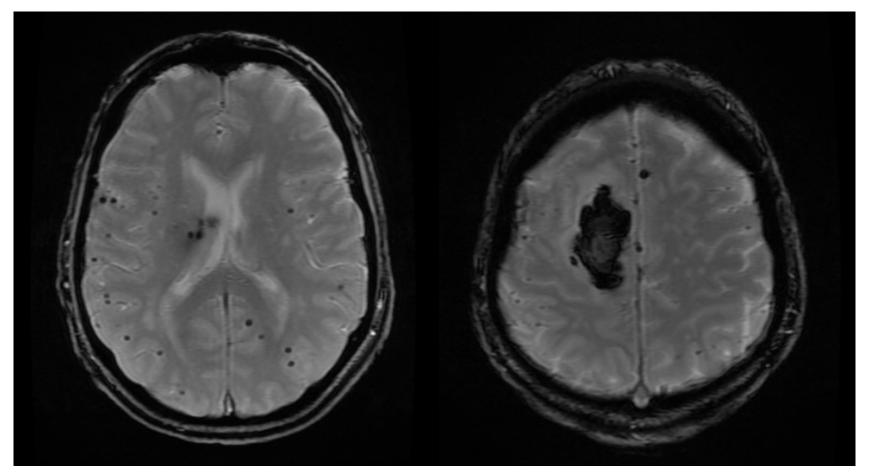
- In lobar ICH, Apo E2's risk is increased in the setting of hypercholesterolemia
- Statin use increases the risk of lobar ICH for Apo E4 containing genotypes, particularly E2/E4 and E4/E4
- OR statin plus Apo E3 is most protective

Microbleeds

- Microbleeds: punctate, homogeneous, rounded, hypointense parenchymal lesions < 5-10 mm visualized on T2* MRI sequences
 - Asymptomatic microhemorrhages
 - Marker of bleeding-prone microangiopathy
- Microbleed frequency
 - ~5-6% healthy elderly population
 - ~60% (range 17-80%) ICH population
 - ~21-26% ischemic stroke population
- Microbleed risk factors
 - Cerebral amyoloid angiopathy (lobar MBs)
 - Hypertension (predominantly deep and infratentorial MBs)

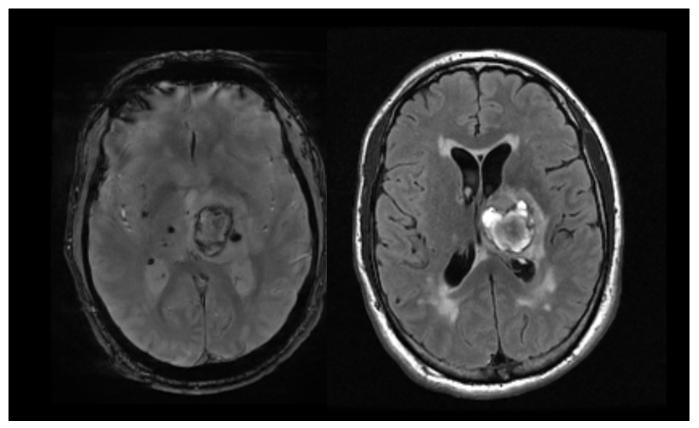
Background: Microbleeds

- Microbleeds presence and burden associated with
 - Recurrent symptomatic ICH
 - Cognitive impairment
 - Severity of small vessel disease and leukoaraiosis
- Recent studies suggestive of racial / ethnic differences in microbleed frequency, burden, and associated risk factors
- Goal of current analysis
 - Explore by race/ethnicity the frequency and characteristics of microbleeds in patients enrolled in ERICH
 - Explore impact of microbleeds on long-term functional outcome


Results – Patient Characteristics

	N=642
Mean Age (SD)	60 yo (13.5)
Male Gender	56.9%
Race	
White	29.0%
Black	38.6%
Hispanic	32.4%
Hypertension	80.5%
Prior Stroke	15.7%
Mean WBC Count (SD), 10 ³ /µL	9.4 (4.5)

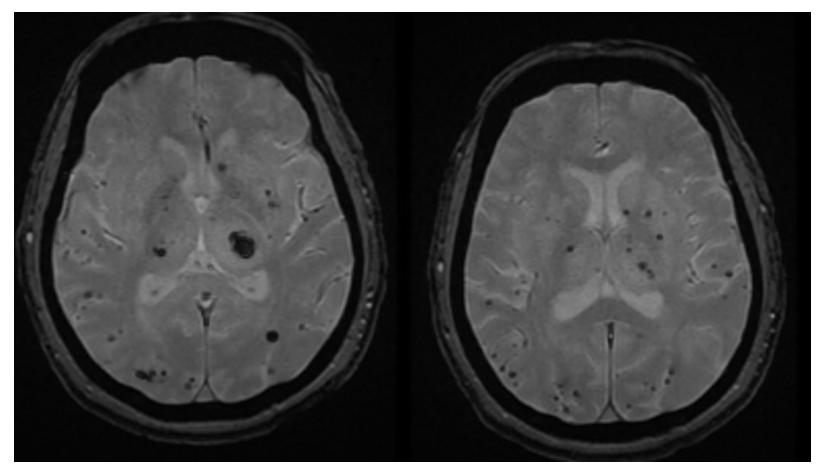
Results – Imaging Characteristics


	N=642
Mean ICH Volume, cc	15.6 (18.2)
Presence of MBs	48.9%
MB count	
Mean	13 (27)
Median (IQR)	4 (2-11)
Median WMD Score (IQR)	6 (4-8)

Case Example 1

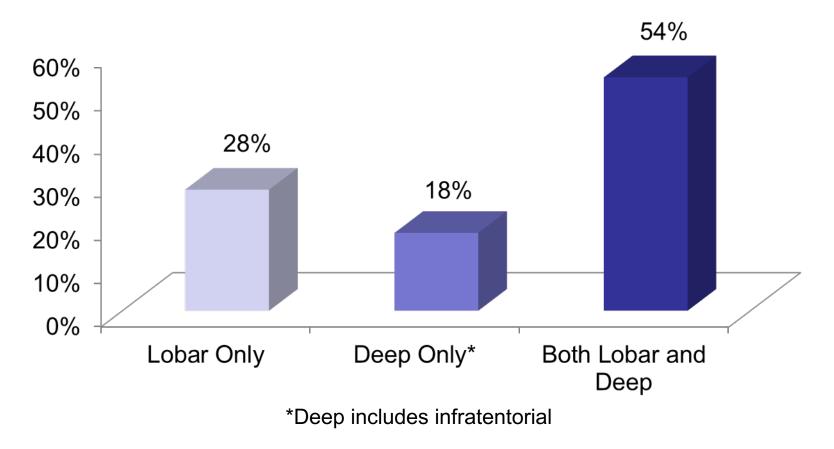
54 yo male with HTN, DM, lobar ICH; predominantly lobar MBs

Case Example 2

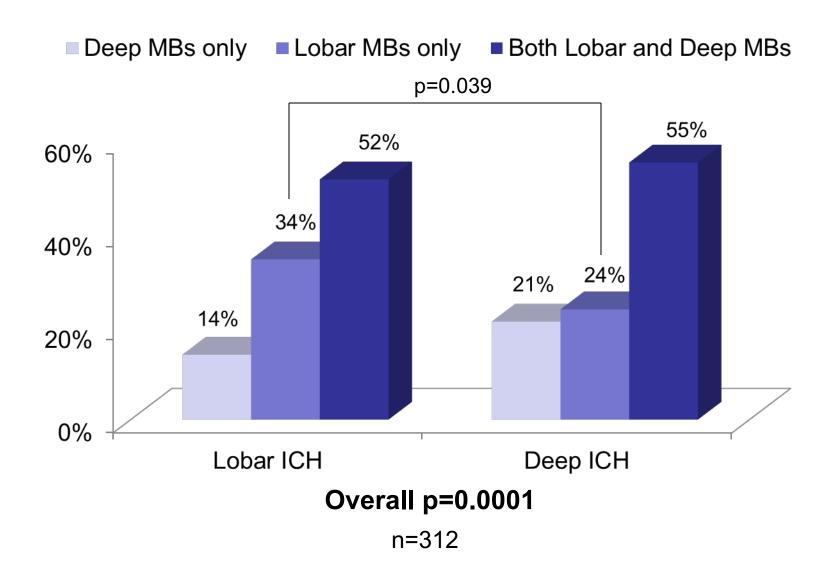


GRE

FLAIR

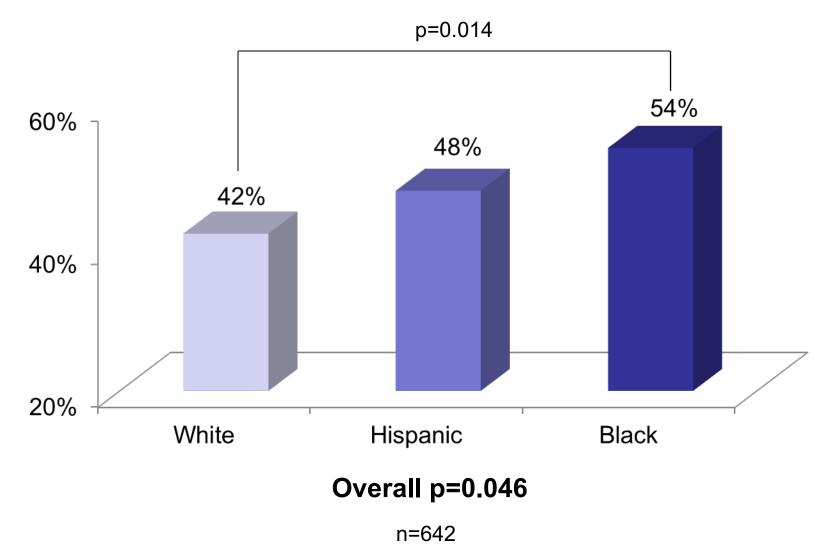

39 yo male with deep ICH and predominantly deep MBs; moderate leukoaraiosis

Case Example 3


64 yrs male with HTN and left deep ICH, both lobar and deep MBs

Microbleed Locations

n=314


Microbleed Location by ICH Location

Univariate Analysis: Microbleed Presence

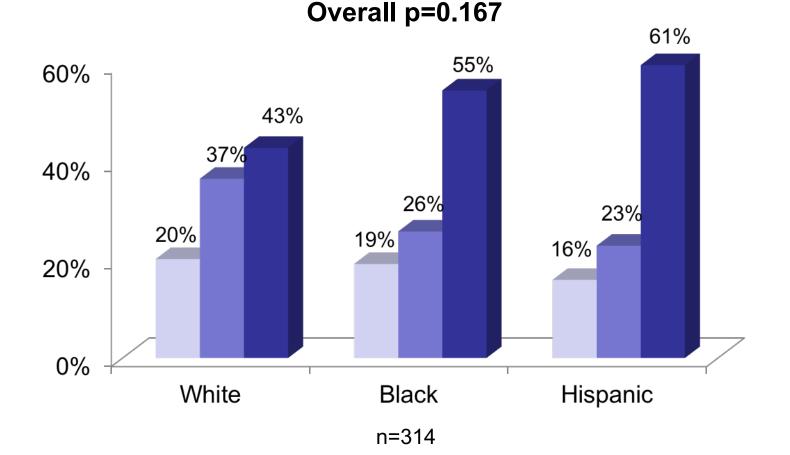
	MB + n=314	MB - n=328	p value
Age (SD)	60.5 (12.8)	59.9 (14.2)	0.531
Hypertension	86%	76%	0.001
Prior Stroke	21%	11%	<0.001
Baseline WBC Count (SD)	9.7 (5.3)	9.0 (3.6)	0.038
Pre-stroke Antiplatelet	39%	40%	0.78
Pre-Stroke Anticoagulation	8%	7%	0.759
Median WMD Score (IQR)	8 (6-10)	4 (4-6)	<0.001
Mean ICH Volume (SD)	13.6 (16.3)	17.4 (19.7)	0.01

Microbleed Frequency by Race/Ethnicity

Univariate Analysis: Racial Comparison of MB+ Cases

	White n=186	Black n=248	Hispanic n=208	p value
Age (SD)	67.5 (13.0)	58.3 (11.0)	58.1 (13.0)	<0.0001*
Hypertension	79.7%	95.5%	79%	<0.001†
Prior Stroke	13.9%	28.1%	17%	0.0244 [‡]
Baseline WBC Count (SD)	10.1 (4.0)	9.4 (6.8)	9.9 (3.5)	0.593
Pre-stroke Antiplatelet	44.3%	37.8%	36%	0.498
Pre-Stroke Anticoagulation	11.4%	6.7%	6%	0.343
Median WMD Score (IQR)	8 (4-8)	8 (6-10)	6 (5-9)	0.028 [±]
Mean ICH Volume (SD)	16.7 (20.7)	13.6 (16.3)	11.3 (11.3)	0.09

*p<0.0001 for W vs. B, and W vs. H


[†]p<0.001 for W vs. B, and for B vs. H

[‡]p= 0.017 for W vs. B, and p=0.046 for B vs. H

 \pm p=0.04 for B vs. W, 0.06 for H vs. W, and 0.042 for B vs. H

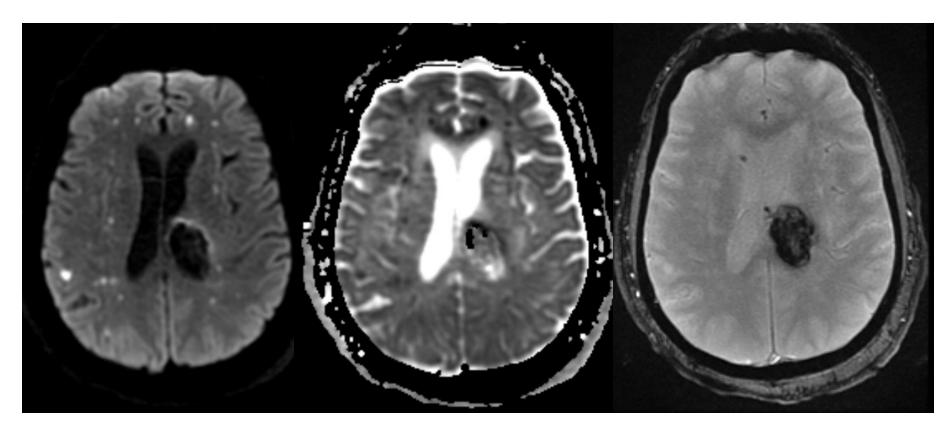
Microbleed Location by Race

Deep MBs only
Lobar MBs only
Both Lobar and Deep MBs

Multivariable Logistic Regression: Presence of Microbleeds

	OR	p value
Hypertension	1.62	0.037
WMD Score	1.36	<0.0001
WBC Count (10 ³ /µL)	1.06	0.012
Race/ethnicity		0.111
Black vs. White	1.53	0.056
Hispanic vs. White	1.49	0.078

Multivariable Logistic Regression: Poor Outcome (6 Month mRS 4-6)

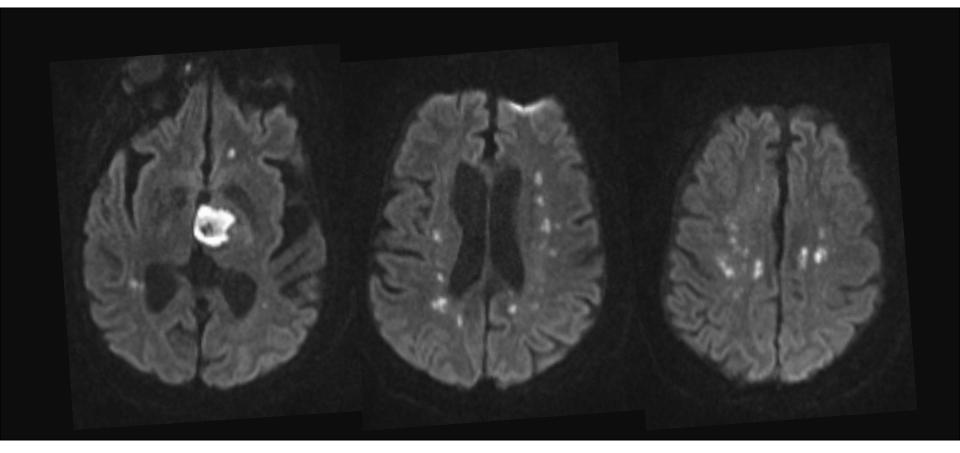

	OR	p value
Presence of Microbleed(s)*	2.21	0.001
ICH Volume	1.04	<0.001
GCS Score	0.82	<0.001
Intraventricular Hemorrhage (IVH)	1.98	0.003
Age (5 year OR)	1.21	<0.001

*WMD score and presence of microbleeds highly colinear

Conclusions

- This study demonstrates substantial differences in microbleed rates
 across race/ethnicities
- This is the first study to report an intermediate microbleed rate among Hispanics relative to white and black ICH cases
- In addition to hypertension and leukoaraiosis, our model suggests that inflammation may be an important factor contributing to microbleeds
- As a biomarker of progressive vasculopathy and poor outcome, microbleeds may provide a valuable surrogate measure in future studies of therapies targeting optimal approaches to risk factor control

Case Example 1

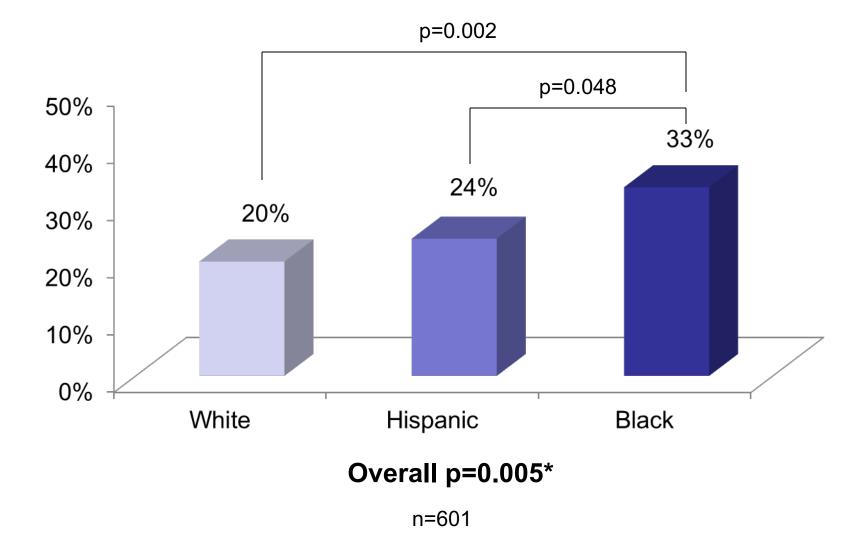

DWI

ADC

GRE: GRADIENT ECHO

Left periventricular ICH in 45 yo black male with hx of HTN; Δ MAP was 106 mmHg

Case Example 2



Left thalamic ICH in 50 yo Hispanic male with hx of HTN; Δ MAP was 125 mmHg

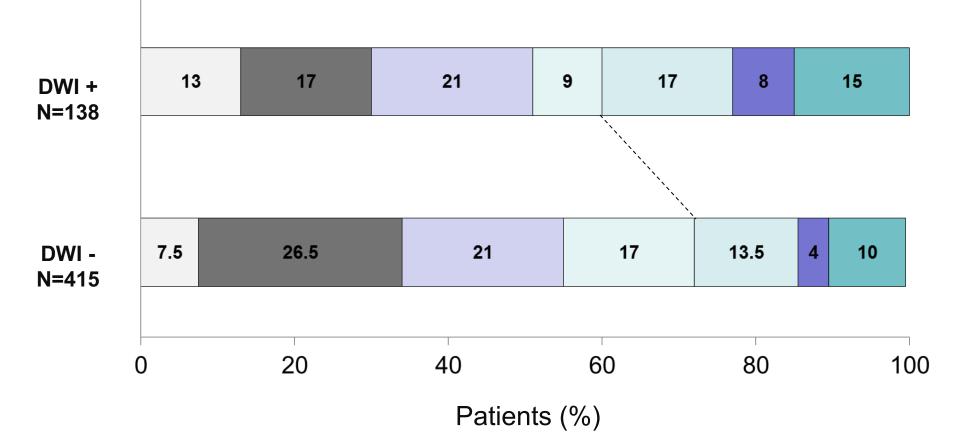
Univariate Analysis

	DWI + n=156	DWI – n=445	p value
Mean Age (SD)	57.3 (13.3)	61.9 (13.6)	< 0.001
Race/Ethnicity			0.005
White	19.6%	80.4%	
Black	33.3%	66.7%	
Hispanic	24.3%	75.7%	
Male Gender	62.8%	52.8%	0.03
Hypertension	81.9%	78.3%	0.347
Prior Stroke	21.8%	14.2%	0.026
Mean Delta MAP, mmHg (SD)	52.2 (28.2)	40.3 (23.3)	<0.001

DWI Frequency by Race/Ethnicity

Multivariable Model for DWI Lesions

	OR	p value
Age (10 year)	0.68	<0.001
Delta MAP (10 mmHg)	1.16	<0.001
WMD Score	1.16	<0.001
Presence of MBs	2.12	0.001


Multivariable Model for Poor Outcome

Poor Outcome = 6 month mRS 4-6

	OR	p value
Age (10 year)	1.44	<0.0001
GCS (1 unit)	0.86	<0.0001
ICH Volume (cc)	1.35	<0.0001
Presence of IVH	2.10	0.002
DWI Lesion Presence	1.84	0.021

6 Month mRS

□ mRS=0 ■ mRS=1 □ mRS=2 □ mRS=3 □ mRS=4 ■ mRS=5 ■ mRS=6

Conclusions

- The ERICH study confirms that
 - Large fluctuations in blood pressure during the acute hospitalization period are associated with DWI lesions
 - DWI lesions are associated with poor outcomes
- We hypothesize that
 - Substantial reductions in BP precipitate acute small vessel ischemia in those ICH patients with a more severe underlying diseased vasculature
 - Or, alternatively, DWI lesions may be a biomarker of autoregulatory failure
- If DWI lesions are precipitated by BP